
SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 2467

BRZO PREKLAPANJE VISOKO POUZDANIH

JEDNOMOLEKULARNIH OČITANJA

Suzana Pratljačić

Zagreb, lipanj 2021.

SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 2467

BRZO PREKLAPANJE VISOKO POUZDANIH

JEDNOMOLEKULARNIH OČITANJA

Suzana Pratljačić

Zagreb, lipanj 2021.

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 12. ožujka 2021.

DIPLOMSKI ZADATAK br. 2467

Pristupnica: Suzana Pratljačić (0036498021)

Studij: Računarstvo

Profil: Računarska znanost

Mentor: prof. dr. sc. Mile Šikić

Zadatak: Brzo preklapanje visoko pouzdanih jednomolekularnih očitanja

Opis zadatka:

Tehnologije treće generacije uređaja za sekvenciranje značajno olakšavaju problem sastavljanja genoma
zbog mogućnosti očitanja znatno duljih fragmenata u odnosu na prethodnike. Jedini nedostatak je visoka
razina pogreške prisutna u takvim fragmentima, iako su se algoritmi brzo prilagodili da ju toleriraju. Nedavno,
tvrtka Pacific Biosciences je poboljšala korištene kemikalije i performanse uređaja za očitanje što je
rezultiralo novim protokolom koji proizvodi visoko pouzdane fragmente. Srednja vrijednost distribucije duljine
fragmenata ovoga protokola je oko 25 kbp bez teških repova, no najimpresivnija je točnost od iznad 99%.
Činjenica da podaci imaju mali broj pogrešaka može se koristiti za osmišljavanje algoritama manje osjetljivih
na pogrešku. Visoka točnost omogućuje smanjenje vremena potrebnog za pronalazak preklapanja između
parova fragmenata ili fragmenata i referentnog genoma. Glavni cilj ove teze je prilagodba javno dostupnih
algoritama za preklapanje dugačkih greškovitih očitanja ili osmišljavanje i implementacija novoga algoritma
koji će biti bolje prilagođen ovom tipu podataka. Rješenje mora biti pogodno za paralelnu arhitekturu i
implementirano u jeziku C++. Izvorni kod treba biti iscrpno dokumentiran koristeći komentare i slijediti Google
C++ Style Guide kada je to moguće. Cijeli programski proizvod potrebno je postaviti na GitHub pod jednom
od OSI odobrenih licenci.

Rok za predaju rada: 28. lipnja 2021.

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

iii

SADRŽAJ

1. Introduction 1

2. Data 3

2.1. Data formats . 3

2.2. PacBio HiFi Data . 4

2.3. Simulated Data . 5

3. Methods 9

3.1. Suffix array construction . 10

3.1.1. Reducing the Problme . 10

3.2. Suffix array search . 11

3.3. Chaining . 13

3.4. Longest Common Prefix Array . 15

4. Implementation 17

4.1. Dependencies . 19

4.1.1. OpenMP . 19

4.1.2. Biosoup . 20

4.1.3. Bioparser . 20

4.1.4. Python requirements . 21

5. Results and Discussion 22

5.1. Evaluation . 22

5.1.1. Benchmark Framework . 22

5.1.2. Hardware . 23

5.2. Map . 23

5.2.1. Artificial Data . 23

5.2.2. Simulated Data . 25

5.2.3. Real Data . 26

iv

6. Conclusion 27

Literatura 28

v

1. Introduction

Over the last fifty years, a lot of research has been done in developing technologies

for DNA and RNA sequencing, resulting in three well-known sequencing generations.

The first generation was focused on short and accurate reads. The second generation

introduced cheap and fast sequencing. Long reads with a high error rate characterize

the third generation.

Although third-generation sequencing have accelerated studies on the genome, the

high error rate limits some downstream applications. In 2019, Pacific Bioscience intro-

duced highly accurate long-read sequencing (HiFi sequencing), a paradigm that com-

bines the best concepts from traditional short and long error-prone reads technologies.

The HiFi reads are characterized by long lengths, 25kpb on average, and base-level

resolution above 99.9% single-molecule read accuracy. These new read characteristics

enable utilizing approaches that are less sensitive to errors, causing the reduction of

computation time.

Several mapping and aligning tools have been developed and adjusted for HiFi re-

ads. Minimap2 (Li (2018)), the universal sequence alignment tool, has recently been

extended with a preset for PacBio HiFi/CCS genomic reads, enabling optimal perfor-

mance and high accuracy for that use case. Another popular tool, developed on top

of the minimap2 codebase, is Winnowmap. Winnowmap (Jain et al. (2020)) improves

mapping accuracy by optimizing the algorithm to perform better on highly repetitive

sequences.

The described tools are based on minimizers and use the standard seed-chain-align

procedure. Roberts et al. proposed the original idea behind minimizers in 2004, and

ever since then, they have been utilized by most sequence alignment tools. They reduce

the storage requirements and enable fast approximate matching. Minimizers are often

indexed in a hash table where the key is a hash value of a minimizer. The position of a

minimizer in the original sequence is the corresponding value. In the seed-chain-align

procedure, the seeds are parts of the query sequence the algorithms are trying to match

because they cannot match the whole query due to the sequencing errors and high time

1

complexity. When using minimizers, the seeds are usually minimizers collected in the

query sequence. The exact matches between seeds and reference sequence are found by

calculating seed hash and searching through the hash table. The values corresponding

to the key determined by the seed hash are these exact matches, also called anchors,

between parts of the query and parts of the reference. Since anchors represent places

where some part of the reference is equal to the query, chaining multiple anchors could

approximate the mapping of the whole query sequence. The chaining step is often

conducted by dynamic programming inspired by the longest increasing subsequence

algorithm.

The drawback of the described approach is many false-positive anchors, causing

the chaining time to be dominant in the execution. [Babojelic] The false-positive anc-

hors often occur due to tandem repeats and repetitive regions in the reference. Tandem

repeats are short patterns of nucleotides that are repeated multiple times in the refe-

rence. The repetitive regions are longer near-identical sequences of nucleotides that

appear numerous times in the reference. Usually, to improve the time complexity, the

minimizers that are part of the repetitive region are discarded, causing poor mapping

quality within these areas.

The drawback of the described approach is many false-positive anchors, causing

the chaining time to be dominant in the execution. [Babojelic] The false-positive anc-

hors often occur due to tandem repeats and repetitive regions in the reference. Tandem

repeats are short patterns of nucleotides that are repeated multiple times in the refe-

rence. The repetitive regions are longer near-identical sequences of nucleotides that

appear numerous times in the reference. Usually, to improve the time complexity, the

minimizers that are part of the repetitive region are discarded, causing poor mapping

quality within these areas.

The minimizers must be small in size, so they cannot resolve the tandem repeats.

If we were to increase the size of the minimizer, then we would have a lot of false ne-

gatives because the anchors are found by comparing the hash values of the minimizers

that do not tolerate sequencing errors. On the other hand, repetitive regions often differ

in several nucleotide bases that are hard to capture with minimizers.

In this article, we will present the novel algorithm based on suffix arrays for sequ-

ence alignment and mapping. We will analyze the performance and accuracy compared

to state-of-the-art tools.

2

2. Data

2.1. Data formats

FASTA and FASTQ formats are de facto standards for storing nucleotide and peptide

sequences. The fundamental building units of biological sequences, amino acids, are

represented as single-letter codes in these text-based formats.

There are two types of lines in FASTA format. The description line regularly conta-

ins the sequence name and often includes additional information like a sequence iden-

tifier. The lines of sequence data must follow the description line. Symbol ’>’ at the

beginning of the description line allows distinguishing between line types. The lines

in FASTA format are generally shorter than 80 characters, which is also recommended

by the norm.

FASTQ is an extended FASTA format that contains the corresponding quality sco-

res in addition to the sequence and its description. The qualities, as well as amino acids,

are stored as single-character codes. There are four different types of lines in FASTQ

format. The first line, which can be recognized by the ’@’ symbol at the beginning,

contains the nonoptional sequence identifier and the optional description. The line with

sequence data is the second line. The third line, beginning with the ’+’ character, may

contain supplementary information like the sequence identifier and description. The

fourth line stores quality scores for the sequence represented by the second line. The

quality score can take on a value between the lowest and highest quality. According

to Phred quality, the lowest quality is 33 (’!’ in ASCII), and the highest quality is 126

(’∼’ in ASCII).

The quality score describes a probability that the corresponding amino acid is in-

correctly sequenced. The standard equation which associates error probability and

quality is Q = −10 log10 p.

PAF format, an output of many sequence alignment tools, is a simple text format

describing the approximate mapping positions between sequences. Each line repre-

sents one alignment or overlap. The line in PAF format is TAB-delimited and contains

3

the fields described in Table 2.2.

Tablica 2.1: PAF format description, Taken from minimap2 manual page

Column Type Description

1 string Query sequence name

2 int Query sequence length

3 int Query start (0-based; BED-like; closed)

4 int Query end (0-based; BED-like; open)

5 char Relative strand: "+" or "-"

6 string Target sequence name

7 int Target sequence length

8 int Target start on original strand (0-based)

9 int Target end on original strand (0-based)

10 int Number of residue matches

11 int Alignment block length

12 int Mapping quality (0-255; 255 for missing)

2.2. PacBio HiFi Data

Single Molecule, Real-Time (SMRT) Sequencing is Pacific Bioscience technology that

enables long-read sequencing. PacBio third-generation long reads are produced by one

pass of the enzyme around the circular template. HiFi reads creation require multiple

passes of enzyme around the circular template in order to achieve high accuracy. En-

zyme passes generate many subreads, and the consensus over them is called a HiFi

read. The following datasets, provided by Pacific Bioscience, are used in this paper.

Tablica 2.2: The PacBio HiFi reads

Dataset Reference Subreads

Drosophila melanogaster - SRR12473480

Anopheles gambiae GCF_000005575.2 SRX8642992 SRX8642991

Phlebotomus papatasi - SRR12454518

Oryza sativa MH63RS2 SRP218375)

4

2.3. Simulated Data

When developing new bioinformatics tools, researchers experiment with various met-

hods that should be evaluated from different points. After evaluation, it is easy to de-

cide whether to include the considered methods in the final solution. Also, to compare

the mapping accuracy between different tools, it is necessary to know the ground truth.

It is difficult to use real data in the evaluation process since the error and alignment in-

formation are not easy to obtain. Since there is no available simulator adjusted to HiFi

reads, we have developed a simple tool to simulate the data according to characteris-

tics of real HiFi reads. The developed simulator can perform two different functions -

sequence generation and read generation.

Sequence alignment tools must work correctly regardless of the proportion of re-

petitive regions. However, adjusting tools to perform well in repetitive areas is chal-

lenging. Sequence generation is helpful in that process since it allows the creation

of artificial repeats. Simple control of the proportion of repetitive regions and their

positions allows monitoring the tool execution in areas of interest.

usage: ./Refgen [options ...] <ref_size> [instructions ..]

default output is stdout

<ref_size>

the size of the reference you want to generate

instructions

instructions for repetitive segments creation

list of (index seed) values

options:

-r, --repetitive-counter <int>

default: 0

the number of instructions

-s, --seed <int>

random seed for reference generation

-p, --probability <double>

the probability that the base will be mutated,

to make repetitive regions distinguishable

-n, --name <string>

reference name

5

-h, --help

prints the usage

For example, the following command will create the sequence with two equal seg-

ments, first runs from index 0 to index 10 exclusively, and second from index 20 to

index 30.

./Refgen -r 4 -p 0 50 0 5 10 17 20 5 30 58

Reads generator uniformly extracts nucleotide sequence from a given reference.

The sequencing errors, substitutions, insertions, and deletions, are simulated according

to implemented error models. The first, straightforward model defines the sequencing

error as uniform distribution, meaning that the error probability is equal for every po-

sition of every generated read.

The second model involves preprocessing, during which quality is learned for each

nucleotide throughout the reference. Preprocessing requires subreads and their ap-

proximate alignment to the given reference in the form of paf format. Needleman-

Wunsch algorithm is employed for each subread to calculate the number of matched

nucleotides between the reference and subread. If the ratio of matched nucleotides and

the alignment length is lesser than the predefined threshold, the subread is discarded.

Otherwise, the optimal alignment is used to update the quality. For each position in

reference, the quality is calculated as the average of qualities obtained as follows:

1. Insertion has occurred if the nucleotide from the subread has no counterpart in

the reference. The quality of the previous position in nucleotide is updated with

the lowest possible quality.

2. The deletion has occurred if the nucleotide from reference has no counterpart in

the subread. The quality of the current position in reference is updated with the

lowest possible quality.

3. If the nucleotides from reference and subread are equal for the given position,

the quality is updated with the corresponding quality in the subread.

4. If the nucleotides are not matched, the quality is updated with the lowest possible

quality.

If the position in reference is not covered with any subread and consequently has no

quality information, the quality for that position is the highest possible.

6

usage: ./Readsgen [options ...] <reference_path>

[<subreads_path>, <paf_path>]

default output is stdout

<reference_path>

path to the reference

<subreads_path>

path to the subreads of the reference,

required when model is set

<alignment_path>

path to the alignements paf file

options:

-m, --model

error model will be trained from reads and alignements

-l, --read_length <int>

default: 25000

the length of the reads

-n, --num_reads <int>

default: 10000

the number of readings to be generated

-c, --complement

default: true

reverse complement

-p, --error_probability <double>

default: 0.01

probability of base sequencing error

-s, --seed <int>

random seed

-h, --help

prints the usage

The probability of the error is calculated from the quality, based on the Phred qu-

ality definition.

p = 10
−Q

10 (2.1)

Each error type occurs with equal probability. Deletion and substitution work as

7

expected. In the case of insertion, half of the inserted nucleotides are randomly cho-

sen. The first next nucleotide in the reference determines the other half of inserted

nucleotides. [PBSIM2]

8

3. Methods

The implementation of HiFiMapper is inspired by several rapid approximate sequ-

ence comparison methods that have been developed over the past few years. These

methods heavily rely on k-mers and k-mer hash functions to provide state-of-the-art

performance.

One of the first such methods was BLAST Altschul et al. (1990). They utilize the

k-mer hash function to find potential matches, which are later expanded by dynamic

programming to produce the final mapping. They first iterate through the reference and

store hash values for k-mers at positions 1, w+1, 2w+1 ... in the hash table. Potential

matches are searched by calculating the hash values for all k-mers in the query and

searching the hash table.

Minimap (Li (2018)) uses minimizers instead of k-mers and, like BLAST, stores

their hash values in the hash table. Minimizers are defined as the smallest k-mers in a

window containing consecutive k-mers of the sequence. Exact matches, determined by

minimizers with equal hash values, between target and queries are called anchors. An

anchor is a 3-tuple (x,y,w), indicating that the kmer of length w extracted at position

x in the target is equal to kmer of the same size w at position y in the query. The

obtained anchors are chained using an algorithm similar to that for solving the longest

increasing sequence of the problem.

The developed tool is similar to the described approaches because it finds potential

matches by extracting k-mers from the query and finding exact matches between k-

mers and the target sequence. The difference between HiFiMapper and the k-mer

based method is in finding these exact matches. HiFiMapper, instead of storing the

reduced k-mer representation of the target sequence, creates the suffix array to enable

fast finding of exact matches and at the same time allow high flexibility in selecting

k-mers from the query.

The essential part of the developed sequence alignment tool is the suffix array, a

space-efficient data structure used for fast searching patterns in the given string. Utili-

zing the suffix array enables us to create a different seeding strategy than the standard

9

one in the seed-chain-align approaches.

Since the suffix array stores the complete reference, seeds are not required to be

extracted consistently, which sometimes could be time-consuming. In the presented

algorithm, seeds are randomly extracted samples from the query sequence. The length

of the sample is the algorithm parameter.

Matching a seed with the reference is performed by searching the suffix array.

While searching the suffix array, we can stop the search before hitting the end of the

pattern. That allows matching only a prefix of seed, meaning that if the sequencing

error occurs in the seed, we can still avoid a false negative.

3.1. Suffix array construction

Suffix arrays are one of the most used data structures in string processing. They have

achieved popularity in practice because of their simplicity and space compactivity

when compared to suffix trees.

For some string S (reference) of length n, its suffix array is an array of indices

corresponding to lexicographically sorted suffixes, denoted as SA(S).

There exist a plethora of suffix array construction algorithms. These algorithms

differ significantly in time and space complexity, essential properties considering the

increasing number of large-scale applications. The time complexity of the implemen-

ted algorithm, described in the paper Two Efficient Algorithms for Linear Time Suffix

Array Construction, is linear in the reference size.

The main idea of the Induced Sorting Variable-Length LMS-Substrings algorithm

is to use the recursively obtained solution to the reduced problem to solve the original

problem. For sake of simplicity, the given string should be terminated by the lexico-

graphically smallest character, usually called sentinel. In the rest of the section, we

will describe the basics of each step of the algorithm.

3.1.1. Reducing the Problme

The first step is the reduction of the problem. We will introduce several terms to be

able to define this part of the algorithm. Let Si be the suffix starting on the index i and

running the sentinel. Suffix Si is an S − type suffix if it is lexicographically smaller

than Si+1. An L− type suffix is a suffix that is larger than the suffix to its right.

We can simply figure out the type of the suffix Si by comparing the character on in-

dex i, denoted as S[i], with the character S[i+1]. Si is the S-type suffix if S[i] < S[i+1].

10

The suffix Si is the L-type if S[i] > S[i+1] holds. But what if S[i] and S[i+1] are the

same characters? For example, the suffix starting on index 3 in the string "bioiinfor-

matics" is "iinformatics", and the suffix starting on index 4 is "informatics". Since the

first two characters are the same, both are equal "i", we continue the comparison with

the right parts of the suffixes, "informatics" and "nformatics". If we take a closer look

at them, we can see that they correspond to the suffixes Si+1 and Si+2. So, if we have

already compared these two suffixes, then the type of Si is equal to the type Si+1 in the

case of equal first characters. The rightmost suffix, sentinel, is defined to be S-type.

Considering these facts, it turns out that determining the type of each suffix can be

efficiently implemented if we scan the given string from right to left.

To summarize, we will give the rules for determining the suffix type.

– The sentinel is the S-type suffix. The suffix containing only the last character

in the string is the L-type suffix since the sentinel is lexicographically smallest

character.

– The suffix Si is the S-type suffix if S[i] < S[i+1], or if S[i] == S[i+1] and Si+1

is the S-type suffix.

– The suffix Si is the L-type suffix if S[i] > S[i+1], or if S[i] == S[i+1] and Si+1

is the L-type suffix.

The character S[i] is classified according to the type of suffix Si. S[i] is an S-type

character if Si is an S-type suffix, and L-type character otherwise.

A character in the given string is said to be the leftmost S character (LMS character)

if it is an S-type character that has the L-type character to its immediate left.

3.2. Suffix array search

Once the suffix array is constructed, an O(PlogN) pattern matching algorithm can be

easily implemented (P is the length of the pattern, and N represents the size of the

suffix array). The idea of the pattern matching algorithm is based on the fact that if the

pattern is a substring of the string, then the pattern is the prefix of at least one suffix

of that string. Since the suffix array contains all sorted suffixes, a simple binary search

algorithm can find all pattern occurrences.

The algorithm matches nucleotide base by nucleotide base to allow partial matches

(pattern’s prefix matches). One nucleotide base is matched in each step. Binary search

is used to find the left and right index of the range of suffixes with the same nucleotide

base (at the position corresponding to the position of the current nucleotide base in

11

the pattern) as the nucleotide base being matched in that step. In this way, the range

of suffixes is reduced at each step. The range of suffixes obtained in the final step

represents all occurrences of the pattern in the string.

This way of finding patterns in a string also allows some nucleotide bases to be

skipped, which can be very useful if we want to ignore those bases with poor quality.

Ignoring nucleotide bases with low-quality represents a great advantage of the suffix

array approach over the approaches that work with hash. If pattern appearances are

found by comparing hash values, then the pattern must have all nucleotide bases equal

to the nucleotide bases in the minimizer sampled from reference; otherwise, their hash

values will not be the same. If a sequencing error has occurred in the minimizer ex-

tracted from the query, it will not be adequately matched with the minimizers from the

reference. It is one of the main reasons why approaches that utilize hash cannot work

with large minimizers.

However, when using the suffix array, bases that are most likely to be erroneously

sequenced can be skipped, and the sample can be matched, although not all nucleotide

bases are equal. We achieve this by not reducing the range of suffixes when the algo-

rithm is in the step that tries to match a base with poor quality. Instead, the algorithm

does nothing; it continues the search with the following nucleotide base in the sample.

Ignoring nucleotide bases with poor quality does not help if a deletion occurred.

However, in that case, it is still possible to match only the prefix - the part of the sample

before the deletion.

Following the example of minimap2 and Winnowmap, HiFiMapper allows setting

the algorithm parameters so that the algorithm discards patterns that appear too many

times in the reference. If the range of suffixes contains more suffixes than the predefi-

ned threshold, none of these matches will be declared an anchor.

Although it contributes significantly to performance, discarding matches often ca-

use fragments that are entirely in repetitive regions not to be mapped. Therefore Hi-

FiMapper implements a new heuristic called extended search. The heuristic allows

reducing the number of anchors while preserving valuable information. If the algo-

rithm finds more matches than the predefined threshold allows, the algorithm keeps

extending the pattern and searching until the interval is reduced enough. In that way,

the algorithm tries to find a difference that may be crucial in discovering the correct

12

position.
Input suffix_array, query, sample_position, sample_length

Output List of anchors

left_index = 0;

right_index = suffix_array.size;

while (matched_size < sample_length or

(extended_search and right_index - left_index >

frequency)) do

if query.quality(sample_position + matched_size) then

binary_seacrh_left(left_index, right_index,

query[sample_position+matched_size]);

binary_seacrh_right(left_index, right_index,

query[sample_position+matched_size]);

if left_index = right_index then

break;

end

matched_size++;

else

matched_size++;

continue;

end

end

if discard and right_index - left_index > frequency then

return;

end

if matched_size < sample_size ×min_match then

return;

end

return anchors;

Algorithm 1: Suffix array search

3.3. Chaining

The chaining algorithm implemented in this paper is described in the Minimap2 article.

All equations presented in this section are taken from Minimap paper. The algorithm

input is a list of anchors sorted according to the end positions in the reference. The

13

algorithm finds various possible chains of anchors and their chaining scores.

The maximal chaining score up to anchor i, denoted as f(i), can be e calculated

with dynamic programming according to the equation:

f(i) = max{max
i>j≥1

{ f(j) + α(j, i)− β(j, i)}, wi} (3.1)

The number of matching nucleotide bases between two anchors is represented by

α(i, j) = min{min{yi − yj, xi, xj}, wi}. The gap cost is represented as β(j, i). The

gap cost is defined with the following equation:

β(j, i) =

∞ yj ≥ yi

∞ max{yi − yj, xi − xj} > G

γc((yi − yj)− (xi − xj)) otherwise

(3.2)

The gap cost is infinity if the distance between the anchors is greater than the

predefined parameter G. γc(l) is the function determines the cost of the gap of length

l.

γ(l) =

0.01 ∗ w ∗ |l|+ 0.5 ∗ log2 |l| l 6= 0

0 l = 0
(3.3)

The w in the definition of γc represents the average value of match size.

Calculating chaining scores with dynamic programming by the described equation

has O(N2) time complexity, where N is the number of anchors. Minimap2 proposed

a heuristic that improves the quadratic complexity of the algorithm.

The heuristic idea is not to consider all possible predecessors but only them h when

calculating chaining scores, resulting in O(hN) time complexity. This approach is

reasonable since chaining to the predecessors of the anchor that is already chained

often results in a lower score. The authors of minimap2 suggest that the constant h

should be set to 50.

Each anchor continues some chain or starts a new one. If the anchor starts a new

chain, then the anchor is its own predecessor. If an anchor continues a chain, then its

predecessor is the anchor at the end of that chain. Storing predecessors when calcula-

ting chain scores allows backtracking and chain identification.

Among all the possible chains obtained using backtracking, minimap2 identifies

the primary chains. The primary chains are chosen not to overlap more than 50%

on the query sequence. However, this can cause the discarding of chains with equal

chaining scores obtained due to repetitive regions that a given fragment cannot resolve.

In the case of several chains of comparable quality, we have decided to report all these

chains. However, chains that overlap significantly on the reference will not be printed.

14

3.4. Longest Common Prefix Array

The longest common prefix array (LCP array) is a data structure that augments the

suffix array. The LCP array stores the values of the longest common prefixes between

consecutive suffixes stored in the suffix array. Udi Manber and Gene Myers introduced

this auxiliary data structure to speed up the pattern matching algorithm.

The algorithm input is the previously constructed suffix array and the sequence

for which it is built. The longest common prefixes should be calculated for adjacent

suffixes in sorted order to achieve O(N) time complexity. Kasai’s algorithm for LCP

construction is used in the HiFiMapper implementation.

If we know that the lcp between two suffixes, denoted as i and j, that are consecutive

in the suffix array is the k > 0, we can conclude that the lcp of suffixes i+1 and j+1 is k

-1. The suffixes i + 1 and j + 1 are obtained by removing the first letter from the suffixes

i and j. Kasai’s algorithm iterates through suffixes from longest to shortest to utilize

the beforementioned fact and reuse k. However, i + 1 and j + 1 may not be adjacent

in the suffix array, so we cannot use the calculated value directly. We know that the

suffix i + 1 must be smaller than the suffix j + 1, and there can be an arbitrary number

of other suffixes between them. The longest common prefix between two suffixes not

adjacent in the suffix array corresponds to the minimum of lcp values stored in the lcp

array between these two suffixes.Therefore, all lcp values between the suffixes i + 1

and j + 1 in the lcp array are at least k-1.

Once we have constructed the lcp array, its values can be used to find the leftmost

and rightmost nucleotide bases that distinguish the substring from all other substrings

in the sequence. A subring (a prefix of a suffix that begins at the position where the

substring begins) shares the largest number of common nucleotide bases with its two

neighbors in the suffix array. This means that for each substring that starts at position

i, the first letter to the right of position i that distinguishes that substring from all other

substrings in the sequence corresponds to the maximum between lcp [sa [i]] and lcp

[sa [i] -1]. Based on the found rightmost nucleotide, we can also find the leftmost

letters that distinguish the substring that ends at position i from all other substrings in

the sequence.

Information on the rightmost and leftmost positions that uniquely determine the

substring can help us filter out false positive matches that occur due to repetitive re-

gions in the sequence. It is possible to validate each match by matching samples that

should be mapped to the leftmost and rightmost positions that distinguish a substring

from other substrings. If the validation succeeds, then we keep the right match only.

15

If validation cannot be performed because the query is not large enough to reach the

leftmost and rightmost positions, all matches are preserved.

16

4. Implementation

The implemented tool allows setting some parameters in order to achieve the best

performance for a particular use case. We will briefly describe each parameter below.

usage: ./HiFimapper [options ...] <target> [<sequences>]

default output is stdout

<target>

path to the targets in FASTA/FASTQ format

<sequences>

path to the queries in FASTA/FASTQ format

options:

-t, --threads <int>

defaul: 8

number of threads

-l, --sample-_length <int>

default: 50

the length of the samples

-c, --sample_count <int>

default: 20

the number of samples extracted from each query

-m, --min_match <double>

default: 0.8

percentage of the sample that must be mapped

for the match to be valid

-q, --quality <int>

default: 90

phred quality

-f, --frequency <int>

default: 10

17

maximum number of matches

-b, --bandwidth <int>

default: 10

size of bandwidth in which sample hits can be chained

-g, --gap <int>

default: 10000

maximal gap between sample hits in a chain

-d, --discard <bool>

default: false

discarding matches that occur more times

than the default frequency

-e, --extended_search <bool>

default: false

allows the extended search heuristics

-r, --repetitive <bool>

default: false

creating lcpa and resolving unmapped

-h, --help

prints the usage

The threads parameter allows defining the maximum number of threads that paral-

lelly execute components that can be parallelized. The sample length parameter sets

the size of the samples that are extracted from the query and whose exact matches with

reference are declared as anchors. The sample count parameter determines the number

of samples that are extracted from the query. The min match parameter determines

the percentage of the sample that must be exactly matched in order for a match to be

declared as an anchor. Setting this parameter to a value less than 1 allows the sam-

ples in which the deletion occurred to become anchors. The quality parameter sets a

threshold that determines whether the base is of good or poor quality. Setting this para-

meter allows skipping bases with poor quality while binary searching suffix array. The

frequency parameter determines the maximum number of matches between one anc-

hor and the reference. If the discard parameter is set, then all anchors that have more

matches with a reference than the specified frequency will be discarded. Discarding

anchors can improve execution time, but at the same time, decrease mapping quality.

If the extended search parameter is set, then the algorithm tries to reduce the number of

matches by mapping the bases outside the sample until the desired number of matches

18

is reached or when it is no longer possible to expand and match the sample. Setting

the repeat parameter allows building lcp array and solving unmapped fragments using

the information from the lcp.

4.1. Dependencies

To build the project from the source, you will need Python3, CMake, and C++ compi-

ler.

4.1.1. OpenMP

The OpenMP API (https://www.openmp.org/) supports multithreading in the

C++ programing language. In C++, OpenMP uses #pragmas to fork additional threads

and create constructs for work sharing. Work sharing construct allows splitting loop

iterations among threads. OpenMP also supports synchronization mechanisms.

In the HiFiMapper implementation, OpenMP is used to parallelize several compo-

nents of the algorithm. Suffix array can be searched in parallel without any synchro-

nization mechanisms since binary search does not change underlying data. Also, each

binary search is entirely independent of other searches. The work-sharing concept is

utilized to distribute queries among multiple threads that implement the same logic for

finding anchors. In that way, each thread is in charge of finding anchors for several

queries, which contributes significantly to performance.

The second component whose parallelization is straightforward is the chaining of

the anchors. Anchors belonging to different queries are independent and consequently

could be chained in parallel. The work-sharing concept is again an obvious choice to

achieve the desired behavior.

When time consumption is crucial, another less obvious component can be paralle-

lized - suffix array construction. Even though there exist methods for parallel construc-

tion of suffix array, in practice, they have been shown to improve run times only three

to four times since there is a lot of required synchronization. However, if the reference

is divided into disjoint parts, then a separate suffix array can be constructed for each

part, and all these suffix arrays can be built parallelly. In conducted experiments, this

approach has been shown to contribute to the time complexity significantly.

When time consumption is crucial, another less obvious component can be paralle-

lized - suffix array construction. Even though there exist methods for parallel construc-

tion of suffix array, in practice, they have been shown to improve run times only three

19

to four times since there is a lot of required synchronization. However, if the reference

is divided into disjoint parts, then a separate suffix array can be constructed for each

part, and all these suffix arrays can be built parallelly. In conducted experiments, this

approach has been shown to contribute to the time complexity significantly. Neverthe-

less, this approach should be used with caution because the search can be performed

more efficiently in one long sequence than in many small sequences. For example, if

we have 1× 107 long sequence, then the basic search that takes O(Plogn) time is about

ten times faster than performing ten O(Plog(n/10)) searches because the logarithm fun-

ction grows slowly. To conclude, if the preprocessing time is not crucial, it is better to

construct larger suffix arrays. Still, if the construction time is important and very few

queries are processed, it is better to split the reference.

4.1.2. Biosoup

Biosoup (https://github.com/rvaser/biosoup) is a C++ collection of header-

only data structures implemented by Robert Vaser and used for storing bioinformatic

sequences in various tools. In the HiFiMapper implementation, the NucleicAcid class

was used and changed to support the required interface. NucleicAcid is implemented

to improve memory usage by storing bases in two bits instead of 8-bit characters. The

basic implementation saves the average quality for a block of 8 bases. We changed the

quality storing logic to support separate quality storage for each base and, at the same

time, reduce memory usage. For each base, quality information is stored in one bit.

The quality is set to 1 if the corresponding quality score is greater than the predefined

quality threshold. In this way, the bases are divided into two groups, high-quality and

low-quality. This information is later used so that bases belonging to the low-quality

group would not be taken into account during the process of finding anchors.

4.1.3. Bioparser

Bioparser (https://github.com/rvaser/bioparser) is a C++ header-only

parsing library developed by Robert Vaser. Except that it supports basic formats like

FASTA and FASTQ, it also supports zlib compressed files. Parsing in batches enables

easy memory management.

20

4.1.4. Python requirements

Python requirements are listed in the requirements.txtin the root directory of

the project. The only requirement in this version is the python package tabulate. The

library allows printing tables in several formats, including latex tables. It is used in the

benchmark framework to enhance the testing process.

21

5. Results and Discussion

In this chapter, we will evaluate the HiFiMapper and compare the performance with

various existing tools when possible.

5.1. Evaluation

We have implemented a simple benchmark framework to facilitate the evaluation pro-

cess and allow easy reproduction of all conducted experiments. All experiments listed

in this chapter can be found in the tests/benchmarks folder in the GitHub repository.

5.1.1. Benchmark Framework

Benchmark framework is written in Python programming language. It provides ab-

stractions for invoking various mapping tools, including HiFiMapper, Winnowmap,

minimap2. The framework comes with a simple API for specifying the various op-

tions offered by the listed tools. Additionally, it is possible to generate and simulate

references and reads using the Reference and Reads classes that provide abstractions

for the HiFi simulator described in the Data chapter. Once the tools are called, it is

easy to access the obtained results and the information generated during the mapping

process, like time and memory consumption. Benchmark framework also offers evalu-

ators for calculating mapping accuracy on results gained by mapping reads generated

by the HiFi simulator.

The mapping of the read is correct if the Jaccard similarity between the calculated

interval (defined by start and end positions in a reference written in the PAF output of

tool) and true interval (true start and end positions of read in the reference) is greater

than or equal to 0.1. Jaccard similarity index is a measure of similarity defined as the

ratio of the intersection and the union of two intervals. It describes the percentage of

shared bases between the calculated and accurate interval.

The mapping accuracy can be calculated only for simulated reads since there is

22

no ground truth for real reads. Therefore, in the experiments including real data, the

evaluation metric is the ratio of mapped reads and the total number of reads.

Each experiment shown in this chapter was conducted five times, and mean values

of metrics were calculated. Additionally, in all experiments, including time measure-

ment, the measuring unit is second.

5.1.2. Hardware

All experiments were performed on the same hardware, with the following specificati-

ons:

OS: Ubuntu 20.04.2 LTS

Arhitecture: x86_64

Processor: AMD EPYC 7662 64-Core Processor

Cores 256

Memory: 738 GiB

5.2. Map

5.2.1. Artificial Data

We evaluated the influence of different parameters on the performance of HiFiMapper.

Experiments in this section were performed on completely artificially generated data

to quickly conclude how parameters affect quality and execution time.

Each table for each pair of parameters contains three performance indicators: map-

ping accuracy, number of unmapped fragments, and fragment mapping time. Mapping

accuracy is calculated as described in the previous section. The fragment mapping

time includes only the searching time (pattern matching in suffix array) and chaining

time (chaining of the found matches). The fragment mapping time does not include

preprocessing time, like suffix array construction and loading data, since it does not

depend on the parameters whose influence has been studied in this section.

The first experiment shows how the sample length and the number of samples affect

mapping quality and execution time. In this experiment 1× 105 fragments of size

25× 103 were mapped against a reference of size 25× 106. There are no repetitive

regions in the reference. It could be expected that the increase in mapping time follows

the increase in sample size since pattern matching in the suffix array is O(plogn),

where p is the size of the pattern, and n is the size of the suffix array. Also, more

samples should take more time to find and chain matches. The data in the Table‘5.1

23

confirm these run-time assumptions. This experiment also confirms the correctness of

the tool implementation since all fragments are accurately mapped.

l / c 10 20 50 70 100

25 1.0, 0, 1.27 1.0, 0, 1.77 1.0, 0, 3.76 1.0, 0, 4.99 1.0, 0, 7.32

50 1.0, 0, 1.32 1.0, 0, 1.87 1.0, 0, 4.03 1.0, 0, 5.16 1.0, 0, 7.59

75 1.0, 0, 1.22 1.0, 0, 1.93 1.0, 0, 4.07 1.0, 0, 5.54 1.0, 0, 8.04

100 1.0, 0, 1.39 1.0, 0, 1.86 1.0, 0, 2.99 1.0, 0, 5.89 1.0, 0, 8.18

150 1.0, 0, 1.52 1.0, 0, 2.18 1.0, 0, 5.01 1.0, 0, 6.28 1.0, 0, 9.12

Tablica 5.1: The influence of sample length and sample count parameters on performance.

The second experiment investigates how the presence of repetitive regions affects

performance. For that purpose, the reference of size 25× 106, in which 30× 103

long repetitive segments cover 10% of the reference size, was generated along with

1× 105 fragments sampled from reference with 0.1% sequencing error probability.

Fragments are 25× 103 bases long. Repetitive segments are generated so that all bases

are the same within all segments, except for approximately every 10000th base. Altho-

ugh repetitive segments make the mapping task more difficult, the differences (every

10,000th nucleotide base) should lead the algorithm to correctly map fragments that

are completely sampled from the repetitive segment. In this experiment, the parame-

ters were set to discard samples that have more than 10 matches.

The results of the experiment are shown in the Table 5.2. We can observe that

when sample length and sample count are small numbers, incorrect mappings occur

because the algorithm cannot distinguish between repeating segments. With an insuf-

ficient amount of information due to low coverage and discarding of the samples, the

fragments that should be mapped to some repetitive segment are mapped to several

repetitive segments causing poor quality when we evaluate all the mappings found by

the tool.

Minimap2 and Winnowmap were run on the same data set. Minimap2 and Win-

nowmap were run on the same data set. Both tools achieved the same mapping quality

of 0.978.

Minimap2 was run with:

minimap2 -x map-hifi -t 256 reference.fasta

fragments.fastq

Winnowmap was run with:

24

l / c 10 20 50 70 100

25 0.868, 140, 1.19 0.917, 0, 1.21 0.992, 0, 3.11 0.998, 0, 4.31 1.0, 0, 3.94

50 0.939, 25, 1.15 0.99, 0, 1.76 1.0, 0, 3.41 1.0, 0, 4.48 1.0, 0, 6.26

75 0.977, 14, 1.19 0.999, 0, 1.37 1.0, 0, 2.56 1.0, 0, 5.13 1.0, 0, 6.66

100 0.992, 3, 1.11 1.0, 0, 1.85 1.0, 0, 3.81 1.0, 0, 5.18 1.0, 0, 6.9

150 0.999, 0, 1.26 1.0, 0, 1.71 1.0, 0, 3.98 1.0, 0, 5.57 1.0, 0, 7.72

Tablica 5.2: The influence of sample length and sample count parameters on performance

when mapping against highly repetitive reference.

winnowmap -W repetitive_k15.txt -x map-pb -t 256

referece.fasta fragments.fastq

The following experiment examines how extended search heuristics affect frag-

ment mapping accuracy. The same data set as in the previous experiment, highly

repetitive reference, is used. In the previous experiment, the algorithm found many

wrong mappings in addition to the correct mappings or was unable to find the accurate

mapping because all anchors were discarded. We expect extended search heuristics to

find the key differences that determine the correct position.

From the data shown in the Table 5.3, we can conclude that the extended search

heuristic positively contributes to mapping accuracy without significantly affecting the

mapping time.

l / c 10 20 50 70 100

25 1.0, 0.0, 1.08 1.0, 0.0, 1.7 1.0, 0.0, 3.33 1.0, 0.0, 4.73 1.0, 0.0, 6.39

50 1.0, 0.0, 1.07 1.0, 0.0, 1.67 1.0, 0.0, 3.48 1.0, 0.0, 4.94 1.0, 0.0, 6.86

75 1.0, 0.0, 1.34 1.0, 0.0, 1.74 1.0, 0.0, 3.59 1.0, 0.0, 5.01 1.0, 0.0, 6.96

100 1.0, 0.0, 1.2 1.0, 0.0, 1.88 1.0, 0.0, 3.91 1.0, 0.0, 5.3 1.0, 0.0, 7.13

150 1.0, 0.0, 1.23 1.0, 0.0, 1.99 1.0, 0.0, 4.24 1.0, 0.0, 5.88 1.0, 0.0, 8.12

Tablica 5.3: The influence of sample length and sample count parameters on performance

when mapping against highly repetitive reference.

5.2.2. Simulated Data

In this section, we will evaluate HiFiMapper on datasets including real references and

reads that are simulated from these references using the described HiFi simulator.

25

Homo sapiens chromosome 13 is a real reference used in this section. Experiments

were performed on this reference since it contains many repetitions and usually pre-

sents challenge for aligning tasks.

We will first investigate how the length and number of samples affect the mapping

quality, the number of unmapped fragments, and the mapping time. To begin with,

we conducted an experiment with the discarding of samples that match more than

the given frequency because in the presence of many repetitive regions, the time of

chaining samples becomes the bottleneck. For this experiment, 1× 105 fragments of

size 25000 were generated with a sequencing error probability of 0.001. Samples in

queries are selected by the sequential method.

An experiment was performed on the same data set as in the previous experiment

to verify how different sample length and frequency values affect mapping accuracy,

the number of unmapped samples, and mapping time. The data in the table confirm

the assumption that discarding samples increases the number of unmapped fragments

because if the fragment is whole in a repeating region, there is a high possibility that

all its samples will be discarded.

l / f 10 50 100

50 0.982, 1010, 48.81 0.978, 628, 60.97 1.0, 2, 123.59

100 1.0, 2851, 28.1 1.0, 2820, 30.54 1.0, 9, 36.83

200 1.0, 2867, 16.54 1.0, 2830, 16.2 1.0, 4, 19.71

Tablica 5.4: The influence of sample length and frequency parameters on performance when

mapping against human chromosome 13.

5.2.3. Real Data

26

6. Conclusion

Zaključak.

27

LITERATURA

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, i Da-

vid J. Lipman. Basic local alignment search tool. Journal of Molecular

Biology, 215(3):403–410, 1990. ISSN 0022-2836. doi: https://doi.org/10.

1016/S0022-2836(05)80360-2. URL https://www.sciencedirect.com/

science/article/pii/S0022283605803602.

Chirag Jain, Arang Rhie, Nancy Hansen, Sergey Koren, i Adam M. Phillippy. A long

read mapping method for highly repetitive reference sequences. bioRxiv, 2020. doi:

10.1101/2020.11.01.363887. URL https://www.biorxiv.org/content/

early/2020/11/02/2020.11.01.363887.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34

(18):3094–3100, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty191.

URL https://doi.org/10.1093/bioinformatics/bty191.

28

Fast Overlapping Single Molecule Highly Accurate Sequencing Data

Sažetak

Sažetak na hrvatskom jeziku.

Ključne riječi: Ključne riječi, odvojene zarezima.

Title

Abstract

Abstract.

Keywords: Keywords.

	Introduction
	Data
	Data formats
	PacBio HiFi Data
	Simulated Data

	Methods
	Suffix array construction
	Reducing the Problme

	Suffix array search
	Chaining
	Longest Common Prefix Array

	Implementation
	Dependencies
	OpenMP
	Biosoup
	Bioparser
	Python requirements

	Results and Discussion
	Evaluation
	Benchmark Framework
	Hardware

	Map
	Artificial Data
	Simulated Data
	Real Data

	Conclusion
	Literatura

