
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS No. 2472

Detection of Modified Nucleotides
Using Nanopore Sequencing and

Deep Learning Methods
Sanja Deur

Zagreb, June 2021

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

Foremost, I am profoundly grateful to my mentor, Professor Mile Šikić, for his

guidance, encouragement, and sharing his expertise with me over the past few years.

Further on, I would like to thank my supervisor, Dominik Stanojević, for providing

useful advice and thoughtful comments regarding this thesis. Finally, I am thankful to

my family and friends, especially my parents, for their unconditional love and support

throughout this entire process.

iii

CONTENTS

1. Introduction 1

2. Background 2
2.1. Related work . 2

2.2. Rockfish . 2

2.3. Problem formulation . 5

3. Dataset 6
3.1. Escherichia coli data . 6

3.2. Homo sapiens data . 6

3.3. Data analysis . 7

3.3.1. Signal length . 8

3.3.2. Alignment . 8

3.3.3. Start raw index . 10

4. Methods 13
4.1. Resolving insertions . 13

4.1.1. Half-half method . 15

4.2. Resolving deletions . 17

4.2.1. Concatenate and divide method 19

4.2.2. Greater neighbour method 20

4.3. Alignment strand . 25

4.3.1. Forward . 25

4.3.2. Reverse . 25

5. Implementation 26
5.1. Dependencies . 26

5.1.1. Guppy . 26

5.1.2. Mappy . 27

iv

5.1.3. PyTorch and PyTorch Lightning 27

5.1.4. Other dependencies . 27

5.2. Code structure . 28

5.3. Training procedure . 31

6. Results 32
6.1. Runtime . 32

6.2. Accuracy . 33

6.3. Discussion . 33

7. Conclusion 34

Bibliography 35

v

1. Introduction

Uvod rada. Nakon uvoda dolaze poglavlja u kojima se obrad̄uje tema.

1

2. Background

Background.

2.1. Related work

2.2. Rockfish

Rockfish1 is a deep learning method for detecting DNA base modifications from Nanopore

signal, developed by my supervisor Dominik Stanojević. The method can be used for

several different tasks, such as read-level and genomic-level 5mC modification detec-

tion, cross-dataset generalization, and bisulfite sequencing. Rockfish has been tested

on sequenced Escherichia coli Repli-G/M.SssI data and NA12878 human data, de-

scribed in more details in chapters 3.1 and 3.2, respectively. The testing shows that

Rockfish achieves state-of-the-art results, or at least comparable performance, as the

methods described in section 2.1.

The Rockfish code consists of the following three parts:

1. extract features

2. train

3. inference
1https://github.com/lbcb-sci/Rockfish

2

msikic
Sticky Note
Improve formating

Figure 2.1: Rockfish pipeline

Figure 2.1 illustrates Rockfish pipeline which is composed of four parts. First,

Nanopore reads are basecalled using Guppy basecaller, in order to infer nucleobase

sequence from the raw signal.

Next, Tombo’s re-squiggle algorithm is used to map basecalled reads to the given ref-

erence using Minimap2 (Li, 2018), and to map signal points to the reference, thus

3

correcting possible basecalling errors.

Third step is feature extraction using event table which is the output of re-squiggle

algorithm. For every read, CpG motifs must be found, whilst taking care of alignment

strand as described in 4.3, thus obtaining CpG regions of 17 nucleobases, because the

window parameter is set to 8 by default, as shown in Figure 2.2. It is also possible to

change the motif, which is "CG" by default, and central position index, which defaults

to zero, thus respresenting the nucleobase "C". For example, motif "AATG", index 2,

and window 7 might be provided, meaning that the nucleobase "T" is in the center, and

length of the region equals 15. . Nucleobases in the said regions get 20 signal points

sampled from the corresponding event. If an event is longer than 20 points, some of

the signal points are removed, and if it is shorter than 20 points, some of the points are

repeated. The resulting signal vectors have exactly 340 elements, and they are stored

in a binary file, together with event lengths, sequences of 17 nucleobases, and labels.

Labels are provided for synthetic datasets, but need to be determined from bedmethyl

file for native datasets, as depicted in Figure 2.1.

Figure 2.2: An example of CpG region, window = 8

Finally, the model is trained on the aforementioned binary file, in addition to en-

coded nucleobase vector, which is attained by assigning different integers to different

nucleobases in the relevant region. The length of these vector should be 340 such as

the signal vector, which is achieved by repeating each label 20 times, hence mapping

20 signal points to every nucleobase. The Rockfish model consists of encoder net-

work and transformer module, and it outputs modification probability for the given

CpG region. The encoder network is used to build latent representations of the in-

put region, and to increase latent dimension for every timestamp. The encoder has

three convolutional blocks, comprised of one-dimensional convolutional layer, GELU

activation function (Hendrycks i Gimpel, 2016) and instance normalization (Ulyanov

et al., 2016). Further on, data is processed using transformer module, i.e transformer

encoder and decoder. The transformer encoder is equivalent to the encoder defined in

4

msikic
Cross-Out

msikic
Sticky Note
?

(Vaswani et al., 2017). Furthermore, the transformer decoder consists of global av-

erage pooling operation which reduces sequence dimension and a linear layer which

outputs logit value, i.e. the wanted modification probability.

Inference takes trained model checkpoint file and re-segmented fast5 files as input, and

outputs the modification probability for relevant CpG regions, alongside with a few

other important information, such as contig, read name, alignment strand, and position

of the central nucleobase (C) in the reference. The last output value is the predicted

modification label, which equals 1 if the logit value is greater than 0, meaning that the

modification occurred, and zero otherwise, which means there is no modification.

2.3. Problem formulation

Rockfish model described in previous chapter achieves state-of-the-art results. How-

ever, Tombo’s re-squiggle algorithm is a bottleneck in Rockfish pipeline (Figure 2.1),

because it is quite slow. The main goal of this thesis is to replace Tombo with another

tool whose task is to remap signal points at indels (insertions and deletions), hence

correcting basecalling errors.

First, the data analysis is conducted and its results are examined (see Section 3.3), in

order to implement new methods in the best possible way. Next, the Remapper model

is implemented and thoroughly explained in chapters 4 and 5. Besides the sole imple-

mentation, Remapper needs to be successfully integrated into Rockfish pipeline. The

biggest difference from the original Rockfish code is the fact that signal vectors now

have variable lengths, instead of their length being fixated at exactly 340 signal points.

Lastly, Remapper is tested, and results between implemented remapping methods and

the original Rockfish code are compared (see Chapter 6).

5

3. Dataset

This chapter gives a brief description of the two datasets used in this thesis, Escherichia

coli and Homo sapiens data. Moreover, data analysis, crucial for the subsequent chap-

ters, is provided. The detailed data analysis is crucial, since it helps whilst making

decisions on what algorithms to implement, what parameters to use, and what thresh-

olds to put.

3.1. Escherichia coli data

Escherichia coli strain K12 MG1655 has been kindly gifted to us by Dr. Swaine Chen’s

laboratory in Genome Institute of Singapore, A*STAR, Singapore. The modifications

on the genomic DNA obtained from the grown E. coli were eliminated using REPLI-g

Mini Kit. Afterwards, the resulting whole genome amplified sample was treated with

M.SssI methyltransferase. The obtained synthetic E. coli data is primarily used for

the data analysis, since it is known which reads are modified. For that purpose, 1,000

modified and 1,000 unmodified reads are examined.

The reference genome has been downloaded from NCBI (National Center for Biotech-

nology Information) GenBank under accession number NC_000913.3. There is a total

of 346,793 CpG sites in the reference genome.

3.2. Homo sapiens data

NA12878 Homo sapiens native dataset (Jain et al., 2018) has been obtained from Eu-

ropean Nucleotide Archive under acession number PRJEB23027. Human genome as-

sembly GRCh38 (Schneider et al., 2017) was used as the input reference for data ex-

traction. Bisulfite sequencing used as a ground truth for NA12878 data was acquired

from ENCODE Project (Consortium et al., 2012) under accession number ENCFF835NTC.

The described human dataset consists of 406,821 reads in total, mapped to the chro-

mosome 21 and 22. The data is partitioned into training, validation, and test set by

6

80%, 10%, and 10%, respectively, as can be seen in the Table 3.1.

Table 3.1: Distribution of Homo sapiens data

Chromosome Training Validation Test

chr21 176,040 22,005 22,006

chr22 149,416 18,677 18,677

Total 325,456 40,682 18,677

For training the model only the high-confidence CpG positions, i.e. the positions

which have at least 10 mapped reads, are included. This definition is in the accordance

with DeepSignal (Ni et al., 2019). Furthermore, only the positions with unambiguous

methylation are considered, meaning that the position is labeled as unmethylated if

the methylation frequency is 0%, whereas it is labeled as methylated if the frequency

is 100%. The final outcome are 5,084,927 unmethylated and 6,211,372 methylated

high-confidence CpG positions.

3.3. Data analysis

The mentioned synthetic Escherichia coli dataset was thoroughly examined and anal-

ysed, taking into consideration if the reads are modified or unmodified. The native

NA12878 human dataset is very large, and is not clearly separated according read

modification, thus it is not analysed in this section.

A large amount of different analyses has been made, however, only the most important

ones are presented in this thesis. In Subsection signal lengths are plotted and com-

mented. Subsequently, in Subsection alignment between reference and queries, i.e.

basecalled reads, is explored and the most important findings written down. At last,

start index of raw signals is analysed, compared against the end of the signal, and plot-

ted in Subsection .

The data analysis is important because it points us in the right direction regarding the

selection of methods to implement, what exactly to keep in mind while coding them,

on which values to set the parameters, etc.

7

3.3.1. Signal length

This subsection briefly gives raw signal lengths of 1,000 modified and 1,000 unmodi-

fied E.coli reads, presented in Figure 3.1. It can be observed that a lot of unmodified

reads have shorter signal lengths, and then also a few of them have extremely long

signal lengths, around 500,000 to 600,000 signal points. On the contrary, modified

reads’ signal lengths are distributed more evenly, mostly below 150,000, and with a

maximum value below 400,000.

Figure 3.1: Distribution of raw signal lengths for modified vs. unmodified reads

3.3.2. Alignment

Alignment is obtained by mapping basecalled reads to the reference, and it is consisted

of the four following CIGAR operations: match, mismatch, deletion, and insertion.

The values in Table 3.2 are calculated as the amount of certain operation in alignment

divided by the length of alignment.

First two rows show the distribution of operations on all bases, from which it can be

concluded that alignments are pretty accurate, considering they have more than 90%

of matches. It can also be seen that modified reads have less matches, and more mis-

matches, deletions, and insertions. In conclusion, modified reads are harder to map

correctly, because, as their name states, they contain modifications.

Last two rows show the comparison of operations at CpG positions, i.e. if "C" is

matched, mismatched, deleted, or inserted. We can conclude that modified reads once

again have less matches, more mismatches and deletions, but, surprisingly, less inser-

tions. Therefore, we are not going to consider inserted "C" as a modification at CpG

context. We will implement reference anchoring, and only look for the CpG positions

on the reference, as it is considered to be the ground truth.

8

msikic
Sticky Note

msikic
Inserted Text
Increase font size in Figures

Table 3.2: Average amount of CIGAR operations across the alignments [%]

Position Modification Match Mismatch Deletion Insertion

Any mod 91.177 3.217 3.295 2.311

nomod 93.867 2.260 2.403 1.470

CpG mod 5.606 0.294 0.142 0.031

nomod 6.275 0.170 0.056 0.035

After aligning basecalled reads to the reference using Mappy, we have noticed that

some reads do not yield any alignment. The further investigation was conducted, and

the findings were that 97.794% of reads with no alignments have mapping quality of

zero. In general, reads with lower mapping quality have either no alignment, or short

and quite incorrect one.

Based on the distribution of mapping qualities, shown in Figure 3.2, it is decided to put

the mapping quality threshold to 10, meaning that all alignments that have the mapping

quality below said threshold are discarded. It can be observed that Mappy has done

a pretty good job, because a vast majority of alignments have the maximum mapping

quality of 60. Lastly, the average mapping quality is, as can be expected, higher for

unmodified reads, because they have less mistakes as has been previously shown in

Table 3.2.

Figure 3.2: Mapping quality of alignments for modified vs. unmodified reads

9

msikic
Sticky Note
why the sum is not 100 ?

3.3.3. Start raw index

Start index of raw signals is the index at which the signal actually starts, that can be

noticed by a sudden peak in the signal amplitude. The assumption is that the first N

signal points before the mentioned peak have a small amplitude, and thus a small stan-

dard deviation.

First, distribution of start raw indices may be seen in Figure 3.3 and it can be concluded

that those indices are generally lower for unmodified reads. The reasoning behind that

might lie in the fact that unmodified reads are easier to basecall, therefore they have

smaller starting area with low amplitude, i.e. the real signal values start before than in

modified reads.

Figure 3.3: Distribution of start index of raw signals for modified vs. unmodified reads

In order to further explain the idea around the start raw index, the first and the last

1,000 signal points are drawn for one representative modified read, and one unmodi-

fied, as shown in Figure 3.4 and 3.5. It can be noticed that signal remains still until

the sudden start raw index peak, and then continues to deviate around the center value.

Furthermore, it can be concluded that there exists no such thing as an end raw index,

since the signal has larger amplitude until the very end of the read.

10

msikic
Sticky Note
i am not sure if you can conclude this. Make same test for distributions. i.e. kolmogorov smirnoff

Figure 3.4: The first and last 1,000 signal points for a representative modified read

Figure 3.5: The first and last 1,000 signal points for a representative unmodified read

We have also decided to look at the standard deviation of signal points before jump-

ing to any conclusions. As can be concluded from Figure 3.5 and 3.6, standard devi-

ation is close to zero until the abrupt appearance of start raw index for both modified

and unmodified representative read. Further on, the standard deviation diverges until

the very end of the signal, which confirms that there does not exist an end raw index.

Based on the findings in this subsection, it is decided to trim the signal, so it begins

from the start raw index until the end of the signal, thus obtaining only the relevant

11

signal points.

Figure 3.6: Standard deviation of the first and last 1,000 signal points for a modified read

Figure 3.7: Standard deviation of the first and last 1,000 signal points for an unmodified read

12

4. Methods

This chapter explains underlying concepts and algorithms necessary for the final Remap-

per implementation described in Chapter 5. Remapper is a tool developed for the sake

of replacing Tombo framework used in the original Rockfish code described in 2.2, and

hopefully to lower the overall execution time. After aligning basecalled reads to the

reference using Mappy, signal points at indels should be remapped, hence the name

Remapper. First, insertions are resolved as depicted in Section 4.1 using the Half-

half method (see Subsection 4.1.1). Next, as explained in Section 4.2, the deletions

are dealt with in one of the two possible ways, Concatenate and divide method (see

Subsection 4.1.1) or Greater neighbour method (see Subsection). Thirdly, Section

provides a short overview of dealing with two different types of alignment strand. At

last, Section describes Binary writer, used for storing the extracted features into binary

file, later on used for training.

4.1. Resolving insertions

Insertions occur when a basecalled read contains a nucleobase, or several consecutive

nucleobases, which are not present in the reference at the same position in the align-

ment. The reference is considered to be the ground truth, and insertions to mainly be

mistakes made during the basecalling process. Therefore, it is necessary to remove

insertions and remap their signal points to the neighbouring bases. In order to do so,

the Half-half method, described in the succeeding subsection, has been developed. As

shown in Algorithm 1 the method takes alignment obtained using Mappy - "al", and

signal points intervals for the observed read - "raw", as inputs. The outputs are signal

points intervals mapped to the reference, and intervals of indices at which deletions

have taken place, that facilitate future handling of deletions.

13

msikic
Sticky Note
???

msikic
Sticky Note
clarify

Algorithm 1 Resolve insertions
1: function RESOLVE_INSERTIONS(al, raw)

2: cigar ← al.cigar if al.strand == 1 else reversed(al.cigar)

3: r_pos, q_pos← 0, al.q_st

4: r_len← al.r_en− al.r_st

5: intervals← [None] ∗ r_len

6: insertion← False

7: deletion_idx← []

8: for length, operation in cigar do
9: if operation in {0, 7, 8} then

10: if insertion then
11: intervals[r_pos]← (center, raw[q_pos].end)

12: insertion, length← False, length− 1

13: r_pos, q_pos← r_pos+ 1, q_pos+ 1

14: for i = 0 to length do
15: intervals[r_pos+ i]← raw[q_pos+ i]

16: r_pos, q_pos← r_pos+ length, q_pos+ length

17: else if operation == 1 then
18: ins_interval← (raw[q_pos].start, raw[q_pos] + length].start)

19: center ← int(np.mean(ins_interval))

20: intervals[r_pos− 1]← (intervals[r_pos− 1].start, center)

21: insertion← True

22: q_pos← q_pos+ length

23: else if operation in {2, 3} then
24: deletion_idx.append((r_pos, r_pos+ length))

25: if insertion then
26: intervals[r_pos]← (center, raw[q_pos].start)

27: insertion, length← False, length− 1

28: r_pos← r_pos+ 1

29: for i = 0 to length do
30: intervals[r_pos+ i]← (raw[q_pos].start, raw[q_pos].start)

31: r_pos← r_pos+ length

32: return intervals, deletion_idx

14

4.1.1. Half-half method

The thinking process behind the occurrence of inserted bases is that they should not

be present, and that they contain signal points which in reality belong to their neigh-

bouring bases. For that reason, the Half-half method deals with insertions applying a

simple heuristic of assigning half of their signal points to the left neighbour, and half

of their points to the right neighbour, as shown in Figure 4.1. If there is an odd number

of signal points, then the right neighbour gets one point more. For example, a total of

5 signal points would be divided into 2 and 3 points, and assigned to the left and right

neighbour, respectively.

Figure 4.1: Half-half method for resolving insertions

Algorithm 1 demonstrates pseudocode for resolving insertions using the Half-half

method. Input arguments are alignment obtained by aligning basecalled read to the

reference using Mappy, and raw signal points that are written as intervals, from which

the exact signal point values are easily attainable. Start of mentioned intervals is inclu-

sive, whilst the end is exclusive.

Firstly, CIGAR operations and corresponding lengths are extracted from alignment,

depending on the alignment strand (for further explanation on strands see 4.3). A few

other variables are initialized, amongst which the starting reference and query posi-

tions that are going to be crucial in the continuation.

15

msikic
Sticky Note
it is not clear how do you segment signal. Do you have information which points belong to which nucleotide without Tombo ?

Subsequently, we iterate through CIGAR, and check if an operation is match (or mis-

match), insertion, or deletion, according to SAM format specification1. If the operation

is insertion (consult line 17 in Algorithm 1), insertion interval is found, taking into ac-

count number of consecutive insertions, then the center index of mentioned interval is

remembered. The end index of left neighbour is set to the center index, insertion flag

is marked as True, and query position is updated depending on number of insertions.

Only the query position is updated because insertions are the type of operation which

consume query, i.e. they appear on the query, and are missing on the reference.

Next, if the operation is match or mismatch (see line 9 in Algorithm 1), and the inser-

tion flag is set, i.e. insertion occurred in the last iteration, then the start index of the

current base is set to the remembered center index. Then, the insertion flag is set to

False, length of match operation is decreased by one, because the current base is "re-

solved", and positions on both query and reference are incremented, which concludes

adjustment of the right neighbour. Then, remaining matches are resolved by simply

mapping the signal points intervals from query to reference. Matches and mismatches

consume both query and reference, thus both of the positions must be increased by the

length of the matches.

Moreover, handling of deletions can be seen at line 23 in Algorithm 1, which is done in

a similar fashion as the previously described matches, with the main difference lying

in remembering deletion intervals essential for the following portion of the Remapper

implementation. Again, if the insertion happened in the last iteration, then half of the

insertion’s signal points are given to the deletion, i.e. the right neighbour. The variables

are adjusted similarly as for the matches, with the difference that only the position on

the reference is incremented, because deletions consume reference. Afterwards, or

immediately if there were no previous insertions detected, the signal intervals are as-

signed to deletions, but in a way that they get zero signal points, e.g. interval (350,

350). If they have not gotten any signal points from possible insertions, deletions enter

the next phase with having assigned intervals, but containing zero points. Lastly, the

reference position is increased by the number of deletions.

Finally, signal intervals assigned to the reference with resolved insertions and deletions

written as empty intervals, together with a list of indices where the deletions occurred,

are returned as the output.

1https://samtools.github.io/hts-specs/SAMv1.pdf

16

4.2. Resolving deletions

Deletions appear when reference contains certain nucleobases which are "deleted", i.e.

not present, in the basecalled read at the same positions in the alignment. This event

is considered to be the result of mistakes whilst basacalling the reads, because bases,

which should be a part of the sequence, are wrongly omitted and "contain zero signal

points". Those deleted bases should have certain amount of signal points, mistakenly

attributed to their neighbours. For this purpose, two methods for resolving deletions

are implemented and compared. One the one hand, there is Concatenate and divide

method, described in Section 4.2.1, which attempts to remap signal points from neigh-

bours to deletions uniformly. One the other hand, Greatest neighbour method is created

and explained in Section 4.2.2, giving deletions signal points from the neighbour that

holds more of them. The Algorithm 2 presents the resolve deletions algorithm, which

takes outputs from the resolve insertions algorithm, and the type of deletion method

as the input. At the end, the algorithm outputs the resulting signal points intervals

remapped at indels, and mapped to the reference.

17

Algorithm 2 Resolve deletions
1: function RESOLVE_DELETIONS(intervals, deletion_idx, del_method)

2: for del_st, del_en in deletion_idx do
3: left← intervals[del_st− 1]

4: right← intervals[del_en]

5: if del_method ==′ concatenate_and_divide′ then
6: sig_st, sig_en← left.start, right.end

7: else if del_method ==′ greatest_neighbour′ then
8: left_len← left.end− left.start

9: right_len← right.end− right.start

10: del_len← del_en− del_st

11: if left_len > right_len and left_len > del_len then
12: sig_st, sig_en← left.start, left.end

13: else if right_len > left_len and right_len > del_len then
14: sig_st, sig_en← right.start, right.end

15: else
16: sig_st, sig_en← left.start, right.end

17: points← np.array_split(range(sig_st, sig_en), del_en− del_st+ 2)

18: if len(points[−1]) == 0 then
19: while len(points[−1]) == 0 do
20: points.pop(−1)

21: interval← points.pop(−1)
22: intervals[del_en]← (interval[0], interval[−1] + 1)

23: for i = del_st− 1 to del_en+ 1 do
24: if len(points) == 0 then
25: if i < del_en then
26: intervals[i]← intervals[del_en].start, intervals[del_en].start)

27: continue
28: interval← points.pop(0)

29: intervals[i] = (interval[0], interval[−1] + 1)

30: return intervals

18

4.2.1. Concatenate and divide method

Deletions are bases which exist on the reference, but are deleted on the basecalled read,

as shown in Figure 4.2, where "C" in the CpG context is modified, or more precisely

deleted, on the read. One of the possible heuristics to deal with that issue is Concate-

nate and divide method, whose goal is to divide signal points between deletions and

their first neighbours uniformly. The signal points from left and right neighbour are

concatenated and divided into equal parts. If there exists a remainder whilst dividing

the points, quite the opposite from the aforementioned insertion resolving process, the

bases to the left get more points. For example, in Figure 4.2, 25 points shall be divided

to three bases, which is achieved in the following way: left neighbour gets 9 points,

deleted base gets 8 points, and, finally, 8 points are assigned to the right neighbour.

Figure 4.2: Concatenate and divide method for resolving deletions

The pseudocode for the Concatenate and divide method is given in Algorithm 2.

The inputs are signal intervals mapped to the reference already modified by the resolve

insertions method, intervals at which deletions occurred, and wanted deletion method.

The resolve deletions method begins with a for loop going through deletion intervals,

19

and finding an interval for the left and right neighbour.

Next, signal start is defined as the start position of left neighbour, and the signal end

as the end position of right neighbour, thus concatenating necessary signal points. At

line 17 in Algorithm 2 points are divided uniformly between neighbours and deletions,

depending on the number of deletions.

The case where there is not enough signal points to divide amongst bases is covered

from line 18 to 22. This part of code makes sure that the right neighbour keeps at least

one signal point. It can be observed that the left neighbour always has at least one

point, at least one point is explicitly given to the right one, and deletions might have

zero or more points. For example, if left neighbour has one point, the right one two

points, and there are two deletions, then the points are given as follows: one to the left

neighbour, one to the first deletion, zero to the second deletion, and, lastly, one to the

right neighbour.

Finally, the program loops through the relevant positions on the reference and maps

points to them, more precisely it adjusts the signal interval start and end. If there are

zero signal points, then an empty interval is made, e.g. (350, 350). After the adjustment

of all deletion intervals, new signal point intervals is returned as the output.

4.2.2. Greater neighbour method

Concatenate and divide method might seem a bit unfair, in sense that it divides signal

points in an uniform way, disregarding the cases in which one neighbour has a lot more

points than the other. For instance, if there is one deletion, and one neighbour has 5

points, whilst the other has 85 points, is it fair to divide points as 30-30-30, taking

away a vast amount of points from the latter neighbour? We have decided to analyse

the direct neighbours on the E. coli dataset (see Subsection 3.1), and based on the re-

sults think about an implementation of an alternative method.

The first assumption is that the bases around deletions have more signal points than

those around matches. The reasoning behind that lies in the previously explored

thought that the basecaller has made a mistake in not detecting the deleted base, and

that it assigned its signal points to the one of the neighbours. Therefore, the deletion

should have probably been in the place where there is more signal points than the av-

erage. The Figure 4.3 confirms the assumption that there are more signal points in

average around deletions than matches. It can be observed that matches have larger

values for 5 signal points, for 10 signal points values are similar, and for larger values,

deletions start to take over. Lastly, it can also be seen in the right figure that unmodified

20

msikic
Sticky Note
longer ?

reads have larger values for smaller number of signal points, and modified ones take

over after 15 points. This can be interpreted in a way that modified reads have more

deletions at CpG positions.

Figure 4.3: Distribution of signal points around matches vs. deletions

Now that we have established that there are indeed more points around deletions

than usual, we can proceed to formulate the second assumption. It looks at the signal

ratio, i.e. the neighbour with less signal points divided by the neighbour with more sig-

nal points, which is a number between zero and 1. So, the second assumption, which is

the foundation of the Greatest neighbour method, claims that the signal points from the

supposed deleted base have been assigned to the neighbour who now has more points.

21

We wonder how often the case that one neighbour has more points than the other hap-

pens. Also we are interested in signal ratios, i.e. how many more signal points does

the larger of two neighbours have. Ratios below 0.5 prove a large difference between

neighbours, for instance, ratio for opening example of 5 and 85 points is 0.0625. On

the contrary, ratios above 0.5 show a smaller difference between neighbours, whilst the

ratio equal to 1 means that the two neighbours have the same amount of signal points.

Figure 4.4 shows distribution of signal points ratios for E. coli reads, and interestingly

strongly confirms the aforementioned statement that modified reads have more dele-

tions than unmodified. Moreover, there are indeed a vast amount of deletions with

ratios below 0.5 which arises the need for the alternative method which will take this

discovered fact into consideration. There is also quite a lot cases with ratio equal

to 1, which can be covered with the previously implemented Concatenate and divide

method. Finally, the interesting fact is that one or two consecutive deletions prevail,

confirming that the basecaller works good, i.e. that it has not basecalled a lot of con-

secutive deletions.

22

Figure 4.4: Distribution of signal points ratio for modified vs. unmodified reads

Greatest neighbour method first compares the number of signal points of left and

right neighbour and decides which one is greater. Then, the signal points of the greater

neighbour are divided between the neighbour and the deletions in a uniform way, same

as in the Concatenate and divide method. For further explanation consult Figure 4.5

where the same starting example from Figure 4.2 is now resolved using the alternative

method.

There exist two edge cases, left and right neighbour having the same amount of signal

points, and not having enough signal points to divide between all the deletions. The

latter case is quite rare because there are mostly one or two consecutive deletions as

23

proved above, and there are usually enough signal points to assign to them. Neverthe-

less, both cases are solved with Concatenate and divide approach.

Figure 4.5: Greater neighbour method for resolving deletions

The lines 7 to 16 in Algorithm 2 are key if we choose the Greatest Neighbour ap-

proach. The number of signal points of left and right neighbour are compared. If one

neighbour is larger than the other, additionally we need to check if its number of signal

points is larger than the number of deletions, i.e. if it has enough points to cover all of

them. If both conditions are met, signal start and signal end are adjusted according to

start and end of that neighbour. Otherwise, signal start and signal end are set as before

and classic Concatenate and divide method is applied.

24

msikic
Sticky Note
it would be interesting to include signal levels. It is expected that it should be the same level for points which belong to an nucleotide

4.3. Alignment strand

4.3.1. Forward

Figure 4.6: Forward alignment strand

4.3.2. Reverse

Figure 4.7: Reverse alignment strand

25

msikic
Sticky Note
I agree with Dominik. The read should be TACGTT

5. Implementation

This chapter provides an overview of external dependencies used for the implementa-

tion presented in Section 5.1. Moreover, detailed code structure and implementation

details are given in Section 5.2. At last, Section 5.3 describes training procedure of the

deep model.

5.1. Dependencies

This sections deals with external dependencies used for the final implementation. First,

it gives a short introduction to Guppy, method used for basecalling the reads (see Sub-

section 5.1.1. Next, Mappy, the method used for aligning reads to the reference is

outlined in Subsection 5.1.2. Furthermore, in Subsection 5.1.3 PyTorch and PyTorch

Lightning, libraries commonly used for deep learning, are described. Lastly, Subsec-

tion 5.1.4 provides a brief overview of other libraries and tools used in this implemen-

tation.

5.1.1. Guppy

Guppy1 is a basecaller based on the RNN architecture that transforms raw FAST5 data

into canonical bases of DNA or RNA. The Guppy toolkit also performs modified base-

calling (5mC, 6mA, and CpG) from the raw signal data, returning an additional FAST5

file of modified base probabilities as the output.

In this implementation, Guppy basecall server is run on a certain port, using base-

calling of high accuracy and GPU mode, in order to obtain accurate basecalling at an

acceptable speed. Furthermore, ont-pyguppy-client-lib2 is a Python Guppy API, used

as a client which connects to the said server and basecalls given FAST5 reads.

1https://community.nanoporetech.com/protocols/Guppy-protocol/
2https://pypi.org/project/ont-pyguppy-client-lib/

26

Both Guppy basecall server and client shall have compatible versions, and in this im-

plementation version 4.4.2 is used.

5.1.2. Mappy

Mappy3 is a Python API built on top of the Minimap2 (Li, 2018) implementation.

Minimap2 is a sequence alignment program which aligns DNA or mRNA sequences

against a large reference genome. In this implementation it is used for mapping Oxford

Nanopore genomic reads to the human genome, as well as E. coli reference.

5.1.3. PyTorch and PyTorch Lightning

PyTorch4 (Paszke et al., 2019) is an open source deep learning Python library used for

tensor computation with strong GPU acceleration, as well as building different deep

neural network architectures.

PyTorch Lightning5 is bulit on top of PyTorch and its main usage is organising the

training code, making it more readable, easier to reproduce, less prone to errors, scal-

able to any hardware without changing the model, etc.

In this implementation, PyTorch is used to implement the deep model and perform cer-

tain tensor calculations, whilst PyTorch Ligthning serves as a tool for organising the

training code.

5.1.4. Other dependencies

h5py6 is a Python interface to the HDF5 binary data format used to store huge amounts

of numerical data, and later easily manipulate that data. In the implementation FAST5

reads are stored in HDF5 files. Furthermore, ont_fast5_api7, a simple Python inter-

face to HDF5 files of the Oxford Nanopore .FAST5 file format, is used to handle those

types of files directly from Python code.

Other dependencies are listed here briefly, due to their familiarity and widespread us-

age:

3https://pypi.org/project/mappy/
4https://pytorch.org/
5https://www.pytorchlightning.ai/
6https://www.h5py.org/
7https://github.com/nanoporetech/ont_fast5_api

27

– NumPy8 - fundamental package for scientific computing in Python

– Biopython9 - set of tools for biological computation in Python

– Matplotlib10 - Python library used for visualisation

– tqdm11 - a fast, extensible progress bar for Python and CLI

5.2. Code structure

The whole implementation has been written in Python 3.7.10, with the help of the de-

pendencies described in the previous section. The code is written in an object oriented

matter, and using multiprocessing to achieve comparable speed with the original im-

plementation. The code is publicly available under the MIT licence at the following

link: https://github.com/sanjadeur/Rockfish/tree/basecall.

The code pipeline is shown in Figure 5.1 where it can be observed that the Tombo

framework present in the original Rockfish implementation (see Figure 2.1) is replaced

with the new Remapper tool. Unlike the original implementation which takes previ-

ously basecalled and re-segmented reads as inputs, this implementation simply takes

raw FAST5 reads.

Next, feature extraction begins with basecalling, continues with the Remapper tool,

and ends in the same way as before. The basecalling process is written completely

in Python using tools mentioned in 5.1.1. In order to avoid basecalling to become

a bottleneck in the pipeline, it is written using multiprocessing, using the producer-

consumer pattern. The number of producers and consumers, called processors in this

implementation, can be set as a parameter of the program. Processors are used to base-

call the input raw data, and put processed reads into the queue. Then, processors take

basecalled reads from the queue, and further process them using Remapper, and finally

write them in a binary format. The program ends when the queue is empty, meaning

there are no more basecalled reads to further process.

8https://numpy.org/
9https://biopython.org/

10https://matplotlib.org/
11https://github.com/tqdm/tqdm

28

Figure 5.1: Rockfish with Remapper pipeline

29

Subsequently, an object of a class Remapper is instantiated and given as an argu-

ment to all of the processors. Remapper consists of seven most important steps, as

follows:

1. find motif positions on the reference

2. align read to the reference using Mappy

3. convert sequence to raw signal

4. find relevant motif positions

5. resolve insertions

6. resolve deletions

7. extract relevant data

In the Figure 5.1 some of the steps above are omitted for the clarity sake, but are

going to be thoroughly explained in the following text.

In the Remapper initialisation part Mappy aligner is instantiated, used for aligning the

read to the reference later on. Also, the positions of central base in the motif, for

instance "C" for the CpG context, are found on the reference, both for forward and

reverse alignment strand. If it is dealt with native dataset, then BED positions shall be

extracted, together with the alignment strand information. It is also possible to filter

the BED positions, leaving only the high confidence ones. The intersection between

found motif positions and allowed BED positions shall be made. Afterwards, the final

motif positions are stored into a variable in a dictionary format, keys being different

chromosomes, and values being a pair of two sets, one for forward strand, and one for

the reverse one.

Next step is aligning read to the reference, and getting the relevant motif positions, in

a way that it is observed which of the previously found motif positions are covered by

the alignment, i.e. also match position on the query.

Then, raw signal intervals must be obtained using the basecalled data, and given to the

resolve insertions method as an input.

Steps 5. and 6. are not going to be explained into further details, because they have

already been examined in sections 4.1 and 4.2, respectively.

Finally, the program loops through the relevant positions and extracts important in-

formation for each of them. The resegmentation data is structured in the following

way:

30

msikic
Sticky Note
how ? :)

– position - central base position on the reference

– event_intervals - raw signal intervals mapped to the bases on the reference

– event_lens - lengths of the event intervals

– bases - bases in the relevant region extracted from the reference (e.g. 17-mer

for motif "CG" and window equal to 8 shown previously in Figure 2.2)

Even though, the remaining part of the pipeline looks the same as in the original

implementation, actually quite a lot of changes needed to be done in order for whole

pipeline to work correctly. Binary writer in the original implementation wrote signals

of exactly 340 points in a binary file. Now, due to manual remapping, and removing

the sampling of 20 signals per base, signals of variable lengths must be successfully

written. In order to do so, a certain overhead shall be introduced, a header containing

number of examples and lengths of every example.

Training portion of the code can now easily read mentioned binary data file, because

offsets are given in the binary header file. Additional changes must be made in the

training as well, because signals differ in length. First, bases in the 17-mer should

be repeated based on event lengths, and not constantly 20 times as before. Secondly,

padding containing zeros must be added to the beginning and the end of the signal in

order to obtain same tensors. Signals which are too long are cut in a way that we keep

the middle of the signal. At last, convolutional layers should be adjusted based on

the new lengths (they are not always 340). After all of that successfully implemented,

modification probabilities can be again obained as the final output of the pipeline.

5.3. Training procedure

The model is trained for 30 epochs in mini-batches of 256 examples, using the back-

propagation algorithm. Binary cross-entropy loss is used in order to measure the per-

formance of the model. For training, AdamW optimizer (Loshchilov i Hutter, 2018),

which implements weight decay regularization for Adam algorithm (Kingma i Ba,

2014), and cyclic learning rate scheduler (Smith, 2015) are utilised. Learning rate is

cyclically changed between lower and upper boundary, which equal to 10-5 and 10-4, re-

spectively. After each cycle, upper bound is changed to half of the value of previous up-

per bound. One step size represents half cycle and is equal to × iterations_in_epoch

.

31

6. Results

This chapter offers an overview of the obtained results divided into two parts, measur-

ing and comparing execution time for different methods, and comparing the accuracy

of methods. Later on, a brief commentary on the obtained results is given, as well as

the propositions for the future work in the field.

The assumption, and the very goal of replacing the Tombo framework, is that the run-

time will be shorter than before. Tombo uses a more complex heuristic than those de-

veloped in this thesis, hence the execution time should be greater. On the other hand,

it is expected that the accuracy whilst using Tombo is higher than with the Remapper

tool. Nevertheless, we hope that heuristics developed in this thesis will yield good

enough accuracy, while at the same time lowering the runtime.

6.1. Runtime

Runtime is first measured for the original Rockfish code, including basecalling using

Guppy, re-squiggling using Tombo, and finally feature extraction. Secondly, runtime

is measured for the Rockfish code including Remapper which only has feature extrac-

tion step. The measurements are conducted three times and the average value is taken,

because there have been small differences across the measurements.

The results for E. coli dataset are presented in Table 6.1. Original Rockfish with

Tombo, Remapper with the first deletion method (Concatenate and divide), and Remap-

per with the second deletion method (Greatest neighbour) are compared. Guppy runs

in the GPU mode and basecalling is done with four basecallers, called producers in

the Remapper, for all of the methods. Furthermore, 24 processors have been used to

process the basecalled reads in all of the cases. All of the measurements are conducted

on the same machine, and with the same setting, thus achieving comparable results.

32

Table 6.1: Comparison of runtimes for Escherichia coli dataset [sec]

Model Modification Guppy Tombo Feature extraction Total

Rockfish mod 31.29 52.55 83.17 167.01

nomod 32.97 58.17 86.26 177.4

Remapper mod - - 138.24 136.56

del #1 nomod - - 146.43 137.42

Remapper mod - - 133.66 133.66
del #2 nomod - - 142.93 142.93

6.2. Accuracy

6.3. Discussion

The main goal of this thesis has been to find a heuristic which would replace Tombo

and whose performance is similar to the original model, but the speed is improved.

From taking a glance at Table 6.1 it can be concluded that we have suceeded in doing

so. Remapper is faster than Rockfish in the both of its implementations, regarding

the way of resolving deletions. All of the methods are slower for unmodified reads

which can maybe be attributed to them having longer signals in average (see Subsec-

tion 3.3.1). The difference in runtimes might not seem so drastic on 2000 E. coli reads,

but when the program is scaled for a large amount of data, the difference in the speed

is indeed noticeable.

33

msikic
Sticky Note
example ? :)

7. Conclusion

Zaključak.

34

BIBLIOGRAPHY

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the

human genome. Nature, 489(7414):57, 2012.

Dan Hendrycks i Kevin Gimpel. Bridging nonlinearities and stochastic regularizers

with gaussian error linear units. 2016.

Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A

Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al.

Nanopore sequencing and assembly of a human genome with ultra-long reads. Na-

ture biotechnology, 36(4):338–345, 2018.

Diederik P Kingma i Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34

(18):3094–3100, 2018.

Ilya Loshchilov i Frank Hutter. Fixing weight decay regularization in adam. 2018.

Peng Ni, Neng Huang, Zhi Zhang, De-Peng Wang, Fan Liang, Yu Miao, Chuan-Le

Xiao, Feng Luo, i Jianxin Wang. Deepsignal: detecting dna methylation state from

nanopore sequencing reads using deep-learning. Bioinformatics, 35(22):4586–4595,

2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-

torch: An imperative style, high-performance deep learning library. arXiv preprint

arXiv:1912.01703, 2019.

Valerie A Schneider, Tina Graves-Lindsay, Kerstin Howe, Nathan Bouk, Hsiu-Chuan

Chen, Paul A Kitts, Terence D Murphy, Kim D Pruitt, Françoise Thibaud-Nissen,

Derek Albracht, et al. Evaluation of grch38 and de novo haploid genome assemblies

35

demonstrates the enduring quality of the reference assembly. Genome research, 27

(5):849–864, 2017.

Leslie N Smith. No more pesky learning rate guessing games. CoRR, abs/1506.01186,

5, 2015.

Dmitry Ulyanov, Andrea Vedaldi, i Victor Lempitsky. Instance normalization: The

missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, i Illia Polosukhin. Attention is all you need. arXiv preprint

arXiv:1706.03762, 2017.

36

Detection of Modified Nucleotides Using Nanopore Sequencing and Deep
Learning Methods

Abstract

Abstract.

Keywords: Keywords.

Odred̄ivanje modificiranih nukleotida koristeći sekvenciranje nanoporama i
duboko učenje

Sažetak

Sažetak na hrvatskom jeziku.

Ključne riječi: Ključne riječi, odvojene zarezima.

	Introduction
	Background
	Related work
	Rockfish
	Problem formulation

	Dataset
	Escherichia coli data
	Homo sapiens data
	Data analysis
	Signal length
	Alignment
	Start raw index

	Methods
	Resolving insertions
	Half-half method

	Resolving deletions
	Concatenate and divide method
	Greater neighbour method

	Alignment strand
	Forward
	Reverse

	Implementation
	Dependencies
	Guppy
	Mappy
	PyTorch and PyTorch Lightning
	Other dependencies

	Code structure
	Training procedure

	Results
	Runtime
	Accuracy
	Discussion

	Conclusion
	Bibliography

