
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER’s THESIS No. 1126

De novo transcriptome assembly
Robert Vaser

Zagreb, June 2015

I would like to thank my beloved girlfriend Marina Štefić and my whole family for

all the support they gave me.

Further on, many thanks to my mentor Mile Šikić for help and knowledge he gave

me over the past years.

Special thanks to Marko Čulinović and Mario Kostelac for helping me with part of

the implementation.

iii

TABLE OF CONTENTS

1. Introduction 1

2. Preliminaries 3
2.1. RNA sequencing . 3

2.2. Transcriptome assembly . 5

2.2.1. Overlap-layout-consensus 6

2.2.2. De Bruijn graphs . 6

3. Methods 8
3.1. Enhanced suffix array . 8

3.1.1. Algorithms . 10

3.2. Error correction . 14

3.3. Overlap phase . 14

3.4. Layout phase . 18

3.4.1. Graph simplification . 18

3.4.2. Contig extraction . 26

3.5. Consensus phase . 26

4. Implementation 28
4.1. Overview . 28

4.2. External dependencies . 29

4.2.1. Afgreader . 29

4.2.2. EDLIB . 29

4.2.3. CPPPOA . 30

4.3. Code structure . 30

5. Results 33
5.1. Testing . 33

5.2. Discussion . 38

iv

6. Conclusion 39

References 40

v

1. Introduction

In the year 1990. started the famous Human Genome Project (HGP) with the task to

find the sequence of nucleotide base pairs the human DNA consist of. The project was

a success, lasted over a decade and costed over 3 billion dollars. It was found out that

the human genome has over 3 billion nucleotide pairs and that more than 99% of pairs

are equal between any two individuals [1]. Beside the huge discovery this project was

the key event in rapid development of sequencing methods.

As the years passed by, novel sequencing technologies started to appear which

enabled genomic analysis of many different species at much lower cost [2]. Newly

obtained individual genes, chromosomes or entire genomes accelerated the develop-

ment of various fields related to biological sciences (medicine, forensics, agriculture

etc. [3]). Side by side with DNA sequencing emerged RNA sequencing (often called

RNA-seq) which enabled transcriptome profiling. A transcription is the set of all RNA

molecules in a cell and it is regularly changing. With the help of sequencing it is po-

ssible to measure the abundance of RNA molecules in different cell states which has

many applications from drug discovery [4] to detection of gene fusions in cancer [5].

The problem with sequencing technologies is that they can only read a limited

amount of bases at once, called reads, which varies depending on platform used [6].

Those fragments are afterwards assembled together into (whole) genomes/transcripts

by programs called assemblers. There are two types of assemblers: mapping and de-

novo. The mapping assemblers map all of the sequenced fragments to a reference

sequence and thus building a new similar sequence. On the other hand the de-novo

approach glues the fragments together to create full length, often novel, sequences

without the aid of reference data. Such reconstruction has many algorithmic challenges

and can take quite amount of time to execute.

This thesis will try to bring up and describe all the necessities and problems in

implementing a transcriptome de-novo assembler.

Chapter 2 will give an introduction to biological background of this thesis.

Chapter 3 will describe the methods used to create a overlap-layout-consensus tran-

1

scriptome assembler.

Chapter 4 will give an overview on this thesis’ implementation which includes

design, code structure and external dependencies.

Chapter 5 will show results of the implementation in comparison to three other

RNA-seq assemblers. In addition it will offer a discussion and thoughts on future

improvements.

Chapter 6 will give a conclusion of this thesis.

2

2. Preliminaries

This chapter contains required knowledge, mostly biological, to understand the topic of

this thesis. First, a brief introduction to RNA sequencing will be given alongside with

its challenges. Afterwards, two different types of de novo assembler will be described

with their advantages and disadvantages.

2.1. RNA sequencing

A set of all RNA molecules is called the transcriptome. It includes messenger RNA

(mRNA) and non-coding molecules such as transfer RNA (tRNA) and ribosomal RNA

(rRNA). To obtain a transcriptome snapshot in a cell at a certain moment the RNA-seq

method is required. RNA-seq is also called whole-transcriptome shotgun sequencing

and is using high-throughput sequencing methods for RNA characterization [7]. As the

RNA sequences are single-stranded and less stable than the DNA, many sequencing

platforms convert RNA to cDNA (complementary DNA) prior to sequencing. The

cDNA is double-stranded and fragmented into smaller pieces which afterwards serve

as a template for sequencing. There are two main types of strategies: single-end and

paired-end. The single-end approach partially reads the fragments from one side, while

the paired-end approach does it from both ends [7]. Both approaches can be seen in

figure 2.1.

The main benefit of paired-end sequencing is that it can help in initial transcriptome

assembly and in finding different isoforms [7]. Isoforms are different proteins produ-

ced by the same gene1. This process is called alternative splicing and occurs during

gene expression, i.e. when the DNA is translated to mRNA and mRNA to proteins.

The whole process can be seen in figure 2.2.

As the sequencing technologies can read a limited amount of bases with less than

100% accuracy (the length and accuracy vary depending on the platform used [6]), the

whole process is redone several times so that each base is read more than once. The
1Isoforms can also refer to different mRNAs sharing exons (coding parts of the DNA).

3

Figure 2.1: Sequencing approaches: single-end vs paired-end [8]

Figure 2.2: Alternative splicing - process where the same gene produces several different

proteins [9].

4

average number of reads per base in the sequence is called coverage [7]. The higher

the coverage the higher the chance of avoiding erroneous bases and reconstructing the

exact starting sequence.

After the sequencing is finished, the big amount of raw data (i.e. reads) needs to

be glued together to obtain the whole transcriptome. This is a task for programs called

assemblers which will be discussed in the next section.

2.2. Transcriptome assembly

As mentioned before there exist two types of assemblers: mapping and de novo (there

is also a hybrid one as a combination of those two). When there is a reference sequence

the mapping approach is used. The reads are mapped to the reference and a new

similar sequence is created. Not many species have a reference genome so the de novo

approach is required.

De novo expression comes from Latin and it means "anew", "from the beginning"

[10]. The de novo assemblers try to reconstruct whole starting sequences without help

of any reference data. Many good DNA de novo assemblers were implemented and

one might ask why not use them for transcriptome assembly. Here are some reasons

why:

1. The DNA sequencing depth (coverage) is usually uniformly distributed across

the genome but sequencing depth of the transcriptome can vary a lot due to

gene expression. Assemblers often use coverage to distinguish repetitive regions,

correct reads and get an optimal set of parameters for the assembly. That would

result in marking the abundant transcripts repetitive, the less abundant erroneous

and the parameters would favour only a subset of transcripts [11].

2. RNA sequencing can be strand specific and RNA assemblers should use that

information to avoid chimeric2 assemblies, where reads from different strands

are tied together. [11].

3. More transcripts can share the same exons and it is hard to distinguish different

isoforms unambiguously [11].

4. The expected result of RNA assembly is a set of sequences (transcripts) while

DNA assembly reconstructs only one sequence (genome).
2Chimera (from Greek mythology) is a single organism composed of more different species and is a

term often used in genetics [12]

5

5. RNA sequencing produces a large amount of short reads which sets high requ-

irements for computational speed and memory efficiency [13].

All the given reasons hint that obtaining the whole transcriptome is a difficult task and

needs additional methods which are not present in DNA assembly.

Nevertheless, DNA and RNA sequencing share the assembly basics and that is

grouping of overlapping reads into contigs and contigs into scaffolds. Scaffolds are

contig groups where contig orientation, order and in-between distance is known [12].

There are many different approaches but here only two will be mentioned, both based

on directed graphs3. First method is based on the De Bruijn graphs (DBG) and the

second is called overlap-layout-consensus method (OLC). The latter one is the core of

this thesis and will be described first.

2.2.1. Overlap-layout-consensus

The OLC method was developed for the first generation of sequencing technology

which produced longer reads [12] and is based on overlap graphs. Each sequenced

read becomes a node in the graph and edges represent the overlaps between nodes (i.e.

reads). The method consists of three phases:

1. Overlap phase - where the overlap graph is built.

2. Layout phase - where the graph is simplified and regionally linearized.

3. Consensus phase - where ambiguities from the layout phase are resolved.

Drawback of the OLC method is the overlap phase which needs a lot of computational

resources. On the other hand, the method’s natural modularity enables optimization

of each phase separately for every new assembly project [14]. Detailed explanation

of each phase will be given in chapter 3 alongside the methods used in this thesis’

implementation.

2.2.2. De Bruijn graphs

Due to the enormous amount of short reads produced by the novel sequencing tech-

nologies a fast method based on the De Bruijn graph was developed. The core of this

method is as follows:
3Graphs are sets of nodes connected by edges. Edges can have many different attributes and when

direction is one of them, graphs get the prefix directed [12].

6

1. Short reads are split to small overlapping sequences of length k (called k-mers)

and are used as edges in the creation of a directional graph.

2. Each edge connects two vertices, first representing the edge prefix of length k -

1 and the other the edge suffix of length k - 1.

3. To reconstruct the starting sequence, an Eulerian path must be find in the graph,

which is a path that visits every edge only once.

The main advantages of this method are that it never looks for pairwise overlaps

between reads and the low memory cost of the De Bruijn graphs [15]. Despite that

the Eulerian path can be found in linear time, there can exist many such paths (due

to repeats[15]) which makes it hard to reconstruct the sequenced genome or transcrip-

tome. Nevertheless, many present-day assemblers, such as SOAPdenovo-Trans [16],

Oases [17] and Trinity [18], are using the De Bruijn graphs for transcriptome assem-

bly. Chapter 5 will give a comparison of this thesis implementation and the mentioned

assemblers.

7

3. Methods

This chapter will bring up descriptions of all the methods used in implementing this

thesis’ assembler. First, the enhanced suffix array and algorithms based on it will be

explained. It is the core component of error correction and the overlap phase which

follow right after. Afterwards, the layout phase will be described with algorithms for

graph simplification and contig extraction. At last, a brief overview of the consensus

phase will be given.

3.1. Enhanced suffix array

In string processing the suffix tree plays a great role. It can solve a multitude of pro-

blems such as super-maximal repeats, longest common substring, all suffix-prefix mat-

ching and many more [19]. Due to their high memory complexity (20 bytes per input

character [19]) it is not always possible to use them, especially in bioinformatics where

big amounts of data are processed. As a space efficient alternative, suffix arrays were

introduced [20] which require 4n bytes in their basic form. Suffix arrays can be cons-

tructed in linear time and memory whether with the help of suffix trees or directly. At

first glance it is not clear how every algorithm based on the suffix tree can be executed

with suffix arrays. According to Abouelhoda et al. [19] it is possible to replace the

suffix tree and all of its algorithms with the enhanced suffix array which consists of the

basic suffix array and additional tables.

The enhanced suffix array is the core of this thesis and it is used for pattern search

in optimal time. Two additional tables need to be added to the basic suffix array. First

is the longest common prefix (LCP) table and the second is the child table. The LCP

table stores lengths of the longest common prefixes of two succeeding suffixes in the

suffix array as shown in figure 3.1. It is the same length as the suffix array and needs

4n bytes of memory. Before defining the child table, some notations and definitions

are needed.

8

Figure 3.1: The enhanced suffix array (top) of the string S = acaaacatat and its l-interval tree

(bottom). Table values 1., 2. and 3. represent up, down and next l-index fields respectively.

Circled values are redundant and can be left out while the arrows indicate field merging of the

child table [19].

9

Definition 3.1. [19] An interval [i..j], 0 ≤ i < j ≤ n, is a lcp-interval of lcp-value l if

1. lcptable[i] < l,

2. lcptable[k] ≥ l, ∀k i+ 1 ≤ k ≤ j,

3. lcptable[k] = l for at least one k, i + 1 ≤ k ≤ j (note: every such k is called a

l-index),

4. lcptable[j + 1] < l.

Definition 3.2. [19] An m-interval [l..r] is said to be embedded in an l-interval [i..j]

if it is a subinterval of [i..j] (i.e., i ≤ l < r ≤ j) and m > l. The lcp-interval [i..j] is

then called the interval enclosing [l..r]. If [i..j] encloses [l..r] and there is no interval

embedded in [i..j] that also encloses [l..r], then [l..r] is called a child interval of [i..j].

The parent-child relationships between intervals virtually creates a lcp-interval tree

of the suffix array [19]. An example of it can be seen in figure 3.1. The lcp-interval

tree is equivalent to the suffix tree without the leaves (although the lcp-interval tree has

implicit singleton intervals [l..l] [19]). This analogy allows top-down traversals of the

tree and pattern search is one of them.

Back to the definition of the child table. It is designed to store information which

helps to determine all child intervals of a given l-interval [i..j] in constant time. There

are three fields in this table: the up, the down and the next l-index field each holding

4n bytes in the worst case. The formal definitions can be find in [19]. Essentially, for a

l-interval [i..j] with l-indices i1 < i2 < ... < ik, the value childtab[i].down or the value

childtab[j+1].up stores the first l-index (i1). The other l-indices can be obtained from

childtab[i1].next_l-index, ... , childab[ik − 1].next_l-index. Some values in the child

table are redundant, as seen in figure 3.1, which enables merging of the three fields to

a single one and thus reducing the memory to just 4n bytes.

To summarize, the space complexity of an enhanced suffix array created from a

string of n bytes is 13n bytes (each table needs 4n bytes plus n bytes for the original

string). What is left to mention is the construction algorithm of each table. They are

shown in table 3.1 with their space and time complexities. Details about each method

can be found in cited papers.

3.1.1. Algorithms

In this section pseudocodes for algorithms based on the enhanced suffix array will

be shown. First is the lcp-tree traversal, i.e. for a given l-interval [i..j] how to find

10

Table 3.1: Enhanced suffix array construction

Table Time Space Method

Suffix array O(n) O(n) SA-IS algorithm - based on

induced sorting [21]

LCP table O(n) O(n) Suffix comparisons [22]

Child table O(n) O(n) Traversal of the LCP table via

stack [19]

a subinterval [l..r] which common prefixes have the character c at position l. This

algorithm is marked as algorithm 1.

Algorithm 1 Traversal of the lcp-interval tree [19]
1: function SUBINTERVAL(i, j, c)

2: i1 = i < childtab[i] and childtab[i] ≤ j ? childtab[i] : childtab[j]
3: l = lcptab[i1]

4: if S[suftab[i] + l] == c then
5: return (i, i1 − 1)

6: while childtab[i1] 6= −1 do
7: i2 = childtab[i1]

8: if S[suftab[i1] + l] == c then
9: return (i1, i2 − 1)

10: i1 = i2

11: if S[suftab[i1] + l] == c then
12: return (i1, j)

13: return (−1, −1)

The second algorithm is pattern search. For a given pattern P of length m find

the m-interval [i..j] where all suffixes share the same prefix which equals P. The time

complexity of this algorithm is O(m) and is shown bellow as algorithm 2. To find

the number of times pattern P occurred in the string S, a simple formula can be used:

num_occurrences = j − i + 1. If all positions of found occurrences are needed,

iterating through the m-interval will do the job but will increase the time complexity

to O(m+ z) where z is the number of occurrences [19].

The third and last algorithm is all prefix-suffix matches, i.e. for a given read find

11

Algorithm 2 Pattern search [19]
1: function INTERVAL_LCP_LENGTH(i, j)

2: if i < childtab[i] and childtab[i] ≤ j then
3: return lcptab[childtab[i]]
4: else
5: return lcptab[childtab[j]]

6:

7: function INTERVAL(P , m)

8: c = 0

9: patternFound = true

10: (i, j) = SUBINTERVAL(0, n, pattern[c])

11: while (i, j) 6= (−1,−1) and c < m do
12: if i 6= j then
13: l = INTERVAL_LCP_LENGTH(i, j)

14: min = l < m ? l : m

15: patternFound = P [c..min− 1] ==

16: S[suftab[i] + c..suftab[i] +min− 1]

17: c = min

18: (i, j) = SUBINTERVAL(i, j, pattern[c])

19: else . singleton interval

20: patternFound = P [c..m− 1] ==

21: S[suftab[i] + c..suftab[i] +m− 1]

22: c = m

23: if not patternFound then
24: break
25: if patternFound then
26: return (i, j)

27: return (−1,−1)

12

prefix-suffix overlaps with all other reads in the data set. When having a large amount

of input strings (reads), it is common to concatenate them together with a delimiter

character which is not present in the input alphabet. For example, having reads R1,

R2 and R3 the resulting string would be S = R1#R2#R3# upon which the enhanced

suffix array is built. With the help of delimiters it is easy to distinguish suffixes of all

reads but an additional dictionary is needed which maps absolute positions in S to read

identifiers. The all prefix-suffix matches algorithm could be implemented directly with

pattern search, for each prefix of the query string the delimiter would be added at its

end and the algorithm 2 would be applied. Such direct approach has quadratic time

complexity O(m2). To lower the complexity to O(m) some modifications are needed

as shown in algorithm 3.

Algorithm 3 All prefix-suffix matches
1: function PREFIX_SUFFIX_MATCHES(P , m)

2: c = 0

3: (i, j) = SUBINTERVAL(0, n, pattern[c])

4: while (i, j) 6= (−1,−1) and c < m do
5: if i 6= j then
6: l = INTERVAL_LCP_LENGTH(i, j)

7: delimiter = find ’#’ in S[suftab[i] + c+ 1..suftab[i] + l]

8: if delimiter == −1 then
9: min = l < m ? l : m

10: if P [c..min− 1] 6= S[suftab[i] + c..suftab[i] +min− 1] then
11: break
12: c = min

13: if c == m then
14: for o = i→ j do
15: if S[suftab[o] +m] == ’#’ then
16: report (read_dictionary[suftab[o]],m) . (id, length)

17: else . try to finish prefix

18: (b, d) = SUBINTERVAL(i, j, ’#’)

19: if (b, d) 6= (−1,−1) then
20: for o = b→ d do
21: report (read_dictionary[suftab[o]],min)

22: (i, j) = SUBINTERVAL(i, j, pattern[c])

13

All prefix-suffix matches continued

23: else . # exists in lcp of interval [i..j]

24: len = delimiter − suftab[i]
25: if P [c..len− 1] == S[suftab[i] + c..suftab[i] + len− 1] then
26: for o = i→ j do
27: report (read_dictionary[suftab[o]], len)

28: break
29: else . singleton interval

30: delimiter = find ’#’ in S[suftab[i] + c+ 1..suftab[i] + c+m]

31: len = delimiter − suftab[i]
32: if P [c..len− 1] == S[suftab[i] + c..suftab[i] + len− 1] then
33: report (read_dictionary[suftab[i]], len)

34: break

3.2. Error correction

As stated before, sequencing technologies produce reads with a certain error rate and

sometimes it is good to perform error correction before the whole assembly process.

To keep in mind is the transcriptome sequencing depth, which can vary a lot due to

gene expression. Reads from the less abundant transcripts could be wrongly marked

as erroneous.

Nevertheless, this thesis’ error correction is an optional phase and is based on k-

mer frequencies [23]. Each k-mer of a read is checked if it occurs more than c times in

the whole data set and if so it is called a solid k-mer. All bases that are not covered by

a solid k-mer need correction. A read is corrected if there exists a set of operations so

that all erroneous bases are corrected, otherwise it is left intact. This method is shown

in algorithm 4.

3.3. Overlap phase

In a nutshell, the overlap phase is finding overlaps between reads. Each read is compa-

red to every other read and its reverse complement1, because the strand from which the

read was sequenced is unknown. In this thesis the enhanced suffix array is used to find

exact prefix-suffix and suffix-prefix overlaps (algorithm 3). Before going into details,

1Reverse complement of a sequence S is a sequence S which contains base pairs of nucleotides from

sequence S in reversed order.

14

Algorithm 4 Error correction [23]
1: function CORRECT_READS(reads, k, c)

2: esa = CREATE_ENHANCED_SUFFIX_ARRAY(reads)

3: for read ∈ reads do
4: correct = true

5: for i = 0; i < read.length− k + 1 do
6: if esa.NUM_OCCURRENCES(read[i..i+ k − 1], k) > c then
7: i += k

8: continue
9: l = max(0, i− k + 1) . left most covering k-mer

10: if a substitution at position i exists such as

11: esa.NUM_OCCURRENCES(read[l..l + k − 1], k) > c then
12: store substitution

13: i = l + k

14: continue
15: r = min(i, read.length− k) . right most covering k-mer

16: if a substitution at position i exists such as

17: esa.NUM_OCCURRENCES(read[r..r + k − 1], k) > c then
18: store substitution

19: i = r + k

20: continue
21: correct = false . unable to correct base, drop read

22: break
23: if correct then
24: apply stored substitutions

15

there are two conventions that were used for overlaps:

1. Id of the first read in an overlap is always smaller than the id of the second one.

2. First read in an overlap is never a reverse complement.

The first convention is needed for an easy way to pick the optimal overlap for a pair of

reads. Algorithm 3 can report suboptimal overlaps due to repeats in reads, both prefix-

suffix and suffix-prefix overlaps and both normal and reverse complement overlaps

can exist simultaneously. The second convention is used to avoid duplication of data,

i.e. overlapping two normal reads (A and B) is the same as overlapping their reverse

complements (A andB). The same stands when only one read is a reverse complement

(A and B versus A and B). Types and descriptions of possible overlaps with such

conventions can be seen in figure 3.2.

Figure 3.2: Different overlap types. Normal type overlaps are those where both reads are

normal while the innie type indicates that read B is a reverse complement. A hang of a read

equals the number of its bases before or after the overlap. If the prefix of A matches the suffix

of B the hangs will be negative [24].

To find all mentioned overlap types using the algorithm 3, two enhanced suffix

arrays need to be constructed. The first one consists of normal reads and the other of

reverse complements. All normal overlaps can be retrieved by matching each read aga-

inst the first array and applying the first convention. To retrieve all innie overlaps, first

16

each normal read needs to be matched with the second array and only matches with ids

greater than the query id are picked. Afterwards, each reverse complement needs to be

matched with the first array and only matches with ids smaller than the query id will be

picked. Picking matches in such manner fulfils mentioned conventions. Furthermore,

it is common to declare a minimum overlap length to decrease the number of overlaps

found. For clarification the whole pseudocode is shown in algorithm 5.

Algorithm 5 Overlap phase
1: function OVERLAP_READS(reads, minOverlapLen)

2: reads_rk = CREATE_REVERSE_COMPLEMENTS(reads)

3: esa = CREATE_ENHANCED_SUFFIX_ARRAY(reads)

4: esa_rk = CREATE_ENHANCED_SUFFIX_ARRAY(reads_rk)

5: overlaps = []

6: . operation← creates tuples by adding read.id to the match pairs (id, length)

7: for read ∈ reads do
8: . normal prefix-suffix and suffix-prefix overlaps

9: overlaps← all matches with length > minOverlapLen from
10: esa.PREFIX_SUFFIX_MATCHES(read, read.length)

11: . innie suffix-prefix overlaps

12: overlaps← all matches with length > minOverlapLen and
13: matches with id < read.id from
14: esa_rk.PREFIX_SUFFIX_MATCHES(read, read.length)

15: for read ∈ reads_rk do
16: . innie prefix-suffix overlaps

17: overlaps← all matches with length > minOverlapLen and
18: matches with id > read.id from
19: esa.PREFIX_SUFFIX_MATCHES(read, read.length)

20: . pick only the best overlap for a pair of reads

21: sort overlaps in descending order

22: prev = nil
23: for overlap ∈ overlaps do
24: if overlap.reads 6= prev.reads then
25: report overlap

26: prev = overlap

17

3.4. Layout phase

The huge amount of generated overlaps conceptually creates an overlap graph which

tends to be big and intricate. Task of the layout phase is to extract contigs from such

graphs. To ease up the task, methods for graph simplification need to be applied first.

That includes removal of redundant overlaps (containment and transitive [25]) and

advanced methods which are based on the string graphs2. Even after simplification

some unresolved parts of the graph often remain. Assemblers tend to extract contigs

from contiguous parts of the graph and fill the gaps afterwards, but in this thesis a

heuristic algorithm was implemented to extract the longest path from a given graph. In

this section each of the simplification methods will be explained as well as the heuristic

extraction algorithm.

3.4.1. Graph simplification

To simplify an overlap graph the redundant data needs to be removed. This includes

removal of containment and transitive overlaps which descriptions are shown bellow:

1. Removal of containment overlaps is straightforward, if a read is contained by

another read it is removed from the graph with all of its overlaps. The pseudo-

code for this method is shown in algorithm 6.

2. A given overlap (o1) is transitive considering overlaps o2 and o3 if the following

stands (ox.part(y) returns which end the read y is using in overlap ox, possible

values: begin or end):

o1.part(A) = o2.part(A)

o1.part(B) = o3.part(B)

o2.part(C) 6= o3.part(C)

(3.1)

Alongside this conditions the overlaps must refer to the same data. To avoid

comparing the actual data (which can be a costly task) a position-based heuristic

[26] is used which includes two formulas (ox.hang(y) returns the hanging length

of read y in overlap ox):

o2.hang(A) + o3.hang(C) ∈ o1.hang(A)± (ε · o1.length+ α)

o2.hang(C) + o3.hang(B) ∈ o1.hang(B)± (ε · o1.length+ α)
(3.2)

2String graph is a bidirectional graph build from reads and overlaps between them. Reads are equ-

ivalent to vertices and overlaps to edges. Each edge direction has a label which equals to the hanging

part of the read it points to [25].

18

An example with a detailed look into different overlap parts is shown in figure

3.3. After the given overlap is declared as transitive, it can be removed from the

graph without any loss of information. Although, the removal should be done at

the end of the algorithm because there might be a transitive overlap considering

other transitive overlaps as shown in figure 3.4. Pseudocode for this method is

shown in algorithm 7.

Figure 3.3: Detailed example of an overlap graph with a transitive overlap (o1)

When the overlap graph is refined a string graph can be build which is needed for

further simplification. Due to sequencing errors, discontinuities like tips and bubbles[27]

often appear. Tips are "dangling" vertices, meaning that they have edges in only one

direction and should be purged. On the other hand, bubbles are structures consisting of

two or more paths which share the starting (called root) and the ending vertex (called

juncture) and contain similar sequences. To determine the similarity of two sequen-

ces the edit distance3 can be used. Examples of a tip and a bubble can be seen in figure

3.5.

3Edit distance is the minimum number of operations needed to transform one string to another [28].

19

Figure 3.4: Example of a transitive overlap (o5) considering another transitive overlap (o1)

Algorithm 6 Removal of containment overlaps
1: function FILTER_CONTAINMENT_OVERLAPS(overlaps)

2: marked = {}
3: for overlap ∈ overlaps do
4: if overlap.hangA <= 0 and overlap.hangB >= 0 then
5: . read A is contained in read B

6: marked← overlap.readA

7: continue
8: if overlap.hangA >= 0 and overlap.hangB <= 0 then
9: . read B is contained in read A

10: marked← overlap.readB

11: continue
12: for overlap ∈ overlaps do
13: if overlap has at least one read ∈ marked then
14: delete overlap

20

Algorithm 7 Removal of transitive overlaps
1: function OVERLAP::IS_TRANSITIVE(o2, o3)

2: o1 = this
3: A = o1.readA

4: B = o1.readB

5: C = o2.readA == A ? o2.readB : o2.readA
6: if o2.part(C) == o3.part(C) then
7: return false

8: if o1.part(A) 6= o2.part(A) then
9: return false

10: if o1.part(B) 6= o3.part(B) then
11: return false

12: if o2.hang(A) + o3.hang(C) 6∈ o1.hang(A)± ε · o1.length+ α then
13: return false

14: if o2.hang(C) + o3.hang(B) 6∈ o1.hang(B)± ε · o1.length+ α then
15: return false

16: return true

17:

18: function FILTER_TRANSITIVE_OVERLAPS(overlaps)

19: for o1 ∈ overlaps do
20: for (o2, o3) ∈ (overlaps of o1.readA ∪ overlaps of o1.readB) do
21: if o1.IS_TRANSITIVE(o2, o3) then
22: mark o1

23: for overlap ∈ overlaps do
24: if overlap is marked then
25: delete overlap

21

Figure 3.5: Example of string graphs containing a tip (top) and a bubble (bottom)

To remove mentioned discontinuities from the string graph, two methods were im-

plemented: trimming and bubble popping (a modified version of [27], similar to the

ones found in the implementation of SGA [23]). Their descriptions are as follows:

1. Trimming is a method where disconnected and dangling vertices are removed.

Disconnected vertices do not have any edges and in transcriptome assembly one

short read often does not form a transcript. Dangling vertices (i.e. tips) are

removed if any of the vertices they are holding onto has a similar edge pointing

to a vertex which is not a tip. The pseudocode is shown in algorithm 8.

2. The bubble popping method is a bit complex. It first locates bubbles in the string

graph with breadth first search (BFS). For each bubble found it determines the

path with the highest coverage. At the end it removes every other path in the

bubble which sequence is at least 90% equal to the selected path’s sequence.

Pseudocode for bubble removal is shown algorithm 9.

Each execution of one of these methods can enable further simplification possibi-

lities and therefore multiple executions are advised. Removal of almost all tips and

bubbles can be achieved by calling both methods in an alternating fashion by keeping

in mind that bubble popping is far more slower and should be called less often than

trimming.

22

Algorithm 8 Trimming
1: function VERTEX::IS_TIP_CANDIDATE()

2: . edgesB contains edges where the beginning of vertex is in overlap

3: . edgesE contains edges where the end of vertex is in overlap

4: if this.edgesB.size() == 0 or this.edgesE.size() == 0 then
5: return true

6: return false

7:

8: function STRING_GRAPH::TRIM()

9: for vertex ∈ this.vertices do
10: if vertex.edgesB.size() == 0 and vertex.edgesE.size() == 0 then
11: . disconnected vertex

12: mark vertex

13: continue
14: if vertex.IS_TIP_CANDIDATE() then
15: edges = vertex.edgesB or vertex.edgesE
16: for edge ∈ edges do
17: . check if the opposing vertex has a similar edge

18: overtex = edge.opposite(vertex)

19: oedges = edge.overlap.part(overtex) == B ?
20: overtex.edgesB : overtex.edgesE
21: isT ip = false

22: for oedge ∈ oedges do
23: . vertex is a tip only if the vertex on the similar edge is not

24: if not oedge.opposite(overtex).IS_TIP_CANDIDATE() then
25: isT ip = true

26: break
27: if isT ip then
28: mark vertex

29: break
30: for vertex ∈ this.vertices do
31: if vertex is markex then
32: delete vertex and all correlated edges

23

Algorithm 9 Bubble popping
1: function VERTEX::IS_BUBBLE_ROOT_CANDIDATE(direction)

2: if direction == B and edgesB.size() > 1 then
3: return true

4: if direction == E and edgesE.size() > 1 then
5: return true

6: return false

7:

8: function STRING_GRAPH::FIND_BUBBLE(root, direction)

9: . Breath First Search until a juncture vertex is found

10: openedQue = [root]

11: closedQue = []

12: bubble = []

13: while not que.empty() do
14: expandQue = []

15: while not que.empty() do
16: vertex = openedQue.pop_front()

17: if not vertex.EXPAND(expandQue, direction) then
18: closedQue← vertex

19: openedQue.swap(expandQue)

20: if a duplicate exists in (openedQue ∪ closedQue) then
21: for each duplicate do . juncture vertex

22: path = backtrack duplicate to root

23: bubble← path

24: break
25: . orientation of the juncture vertex can vary in different paths

26: bubbleB = pick paths from bubble where the juncture uses its beginning

27: bubbleE = pick paths from bubble where the juncture uses its end

28: if bubbleB.size() > 1 then
29: return bubbleB
30: if bubbleE.size() > 1 then
31: return bubbleE
32: return nullptr

24

Bubble popping continued
1: function STRING_GRAPH::POP_BUBBLE(bubble)

2: sequences = []

3: for path ∈ bubble do
4: sequences← path.extract_sequence()

5: bestPath = select path ∈ bubble with the highest coverage

6: for i = 0→ sequences.size() do
7: if i == bestPath then
8: continue
9: distance = EDIT_DISTANCE(sequences[i], sequences[bestPath])

10: if distance÷ sequences[bestPath].size() < maxDifference then
11: . path bubble[i] can only be removed if all of its vertices (except root,

12: juncture) do not have any external edges

13: if ∀vertex ∈ bubble[i]\{root, juncture}
14: vertex.edgesB.vertices ∈ bubble[i] and
15: vertex.edgesE.vertices ∈ bubble[i] then
16: delete bubble[i] from graph

17:

18: function STRING_GRAPH::POP_BUBBLES()

19: bubbles = []

20: for vertex ∈ this.vertices do
21: for direction ∈ {B,E} do
22: if not vertex.IS_BUBBLE_ROOT_CANDIDATE(direction) then
23: continue
24: bubbles← this.FIND_BUBBLE(vertex, diretion)

25: for bubble ∈ bubbles do
26: this.POP_BUBBLE(bubble)

25

3.4.2. Contig extraction

Last step of the layout phase is contig extraction, i.e. joining reads from contiguous

parts of the string graph. It is not rare that the graph has unresolved parts even after

applying simplification methods. Those parts become gaps between contigs and need

to be filled with methods which will not be discussed in this thesis. In transcriptome

assembly the string graph tends to split into smaller components which extraction ne-

eds to be done first (a straightforward task). To avoid troublesome gaps between con-

tigs, a heuristic method was implemented which tries to extract the longest path4 from

a graph component. Its step-by-step description is as follows:

1. Find all possible starting vertices and pick the topN . The ranking criterion is the

length of the contiguous path from a starting vertex to the first branching vertex.

2. For each of the best starting points try to extract a path as long as possible.

Expand the graph gradually with a new vertex until an end point is reached or

a cycle is formed. If a branching vertex occurs, recursively determine which

branch to take (again the criterion is the path length). Terminate the recursion

if M subsequent branching vertices are reached or again if a cycle is formed.

To efficiently detect cycles, the expand function and the recursion share a set of

visited vertices. All vertices visited during a recursive call have to be removed

from the set before the recursive call ends because the recursion is used only for

decision making.

3. Pick the longest of all found paths.

This heuristic algorithm is not as complex as other layout phase methods so no pse-

udocode is provided.

3.5. Consensus phase

In the consensus phase ambiguities in found contigs need to be resolved. All reads

that make a contig are aligned together, with a multiple sequence alignment method,

and at each base a majority vote takes place [29]. In this thesis’ implementation only

exact overlaps are produced and there is no need for a consensus phase at this moment.

Transcripts can and are provided directly from graph components at the end of the

4Graphs can be cyclic which makes the longest path problem NP-hard and no polynomial-time so-

lution is known.

26

layout phase. Nevertheless, consensus is a part of this assembler and is meant for

future use when inexact overlaps might be added. It uses the partial order alignment

(POA)[30] algorithm which is based on partial order graphs. The algorithm was not

implemented directly but is used from an external library and will not be discussed into

any details.

27

4. Implementation

This chapter includes a brief overview of this thesis’ implementation, its external de-

pendencies and code structure.

4.1. Overview

The name of the implemented OLC transcriptome assembler is Ra which is short

for RNA assembler. It is entirely written in the C++ programming language and

is documented according to Doxygen conventions (both html and latex documenta-

tions will be created if Doxygen is run). The whole project is freely available at

https://github.com/rvaser/ra with usage instructions written in readme

files.

Ra was designed to be a library of assembly tools. The core functions and cla-

sses can be found in the ra/src directory while the external dependencies are found in

ra/vendor. Code statistics of the implementation’s core directory can be seen in figure

4.1. After the Makefile is run from the root directory, the static library libra.a is created

which holds the core functionality needed by all Ra modules. There are five modules

in total and each of them consists of a main.cpp file and a Makefile. Their names and

short descriptions are shown bellow:

1. ra_correct - Module is optional and is used to correct reads before the assembly

process (it should be used before ra_overlap).

2. ra_overlap - Module is used to find all (prefix-suffix and suffix-prefix) overlaps

between single-end reads. It also removes containment and transitive overlaps

to avoid storing a large amount of data to a file.

3. ra_layout - Module is used to create a string graph from a set of overlaps (which

are not containment nor transitive). It then simplifies the graph with trimming

and bubble popping methods. At the end it tries to extract the longest path from

28

https://github.com/rvaser/ra

Figure 4.1: Code statistics of the implementations’ core directory obtained with cloc

every graph component. As the current overlapper is exact, it also extracts whole

transcripts so that the consensus phase can be avoided.

4. ra_consensus - Module is used to build consensus sequences (i.e. transcripts)

with the help of the POA algorithm.

5. to_afg - Module is used to convert read sets from FASTA[31] or FASTQ[32]

format to the afg (AMOS[33]) format. It is necessary to convert reads because

all other modules are using the afg format.

As mentioned before, Ra has external dependencies (all publicly available on Git-

Hub) which will be briefly described in the next section.

4.2. External dependencies

4.2.1. Afgreader

Afgreader is a C++ implementation of the afg format reader. It was written by Mario

Kostelac and is publicly available at https://github.com/mariokostelac/

afgreader. The class is utilized for reading files in afg format and was wrapped in

the IO.cpp file. It supports many AMOS message types but it is mainly used for input

of reads and overlaps.

4.2.2. EDLIB

EDLIB is a C/C++ library for sequence alignment using the edit distance. It was writ-

ten by Martin Šošić and is publicly available at https://github.com/Martinsos/

edlib. In the Ra project it was wrapped in the EditDistance.cpp file and is mainly

29

https://github.com/mariokostelac/afgreader
https://github.com/mariokostelac/afgreader
https://github.com/Martinsos/edlib
https://github.com/Martinsos/edlib

used for edit distance retrieval of two sequences. This distance is used in the bubble

popping procedure to determine if different paths in a bubble are similar enough before

removal.

4.2.3. CPPPOA

CPPPOA is a C++ implementation of the Partial Order Alignment algorithm. It was

written by Marko Čulinović and is publicly available at https://github.com/

mculinovic/cpppoa. It was wrapped in the PartialOrderAlignment.cpp file and

is used in the consensus phase. Its main task is to retrieve the consensus sequence (i.e.

transcript) from a set of reads.

4.3. Code structure

To use Ra as a library the header file ra.hpp needs to be included as well. It includes

main header files from the implementations’ core and its dependency tree can be seen

in figure 4.2. The Ra core is organized in multiple classes and files which descriptions

are shown bellow:

– CommonHeaders.hpp - includes often used standard libraries like stdlib.h, st-

dio.h, string, vector etc.

– EnhancesSuffixArray.cpp / EnhancesSuffixArray.hpp - class EnhancesSuffixAr-

ray which is used for pattern search.

– IO.cpp / IO.hpp - contains functions for input and output of Read, Overlap and

Contig objects. It also has functions for input and output of byte buffers needed

for caching EnhancedSuffixArray and ReadIndex objects.

– Overlap.cpp / Overlap.hpp - class Overlap which represents an overlap between

two Read objects. It also contains methods for filtering of containment and

transitive Overlap objects.

– Preprocess.cpp / Preprocess.hpp - contains functions for error correction and

duplicate filtering of Read objects.

– PartialOrderAlignment.cpp / PartialOrderAlignment.hpp - contains a function

for generating the consensus sequence from a Contig object.

– Read.cpp / Read.hpp - class Read which represents read sequences.

30

https://github.com/mculinovic/cpppoa
https://github.com/mculinovic/cpppoa

– ReadIndex.cpp / ReadIndex.hpp - class ReadIndex which is a wrapper for En-

hancedSuffixArray. It was implemented to keep the memory complexity at 13n

(n being the length of all reads) when the input data is too big and to concate-

nate read sequences to a single string. It also contains prefix suffix and pattern

matching methods for Read objects.

– StringGraph.cpp / StringGraph.hpp - class StringGraph and its helper cla-

sses: Edge, Vertex, StringGraphNode, StringGraphWalk, StringGraphCompo-

nent and Contig. Contains methods for string graph simplification and contig

extraction.

– Utils.cpp / Utils.hpp - class Timer and its methods for measuring and printing

of the elapsed time.

31

Figure 4.2: Dependencies tree of Ra’s core header file 32

5. Results

To see how the Ra assembler performs, two benchmark tests were executed where the

transcriptome is assembled and aligned to the corresponding genome. In this section

first the performed tests will be explained in detail and afterwards a discussion about

results and possible future improvements will be given.

5.1. Testing

Both benchmark tests were found within the SOAPdenovo-Trans paper [16] and were

applied on the Ra assembler. The tests include execution time, memory usage, number

of transcripts found and how they align to corresponding genomes. They include the

rice and the mouse transcriptome data. The paper shows two versions of each test,

one using a smaller version of the data sets and the other one using full sets. In this

thesis only the tests with the smaller versions were executed and the description of

each transcriptome set is as follows:

– rice transcriptome set - generated from the Oryiza sativa 9311 on an Illu-

mina Genome Analyizer. It contains 9.8 million paired-end reads with length

of 75bp (short for base pairs). This set is available for download at http:

//www.ncbi.nlm.nih.gov/sra/SRX017631. It is part of the full set

which other parts can be obtained at the same web adress with different names:

SRX017631, SRX017632 and SRX017630.

– mouse transcriptome set - generated from the Mus musculus on an Illumina

Genome Analyize II. It contains 52.6 million paired-end reads with length of

76bp. The set is available for download at http://www.ncbi.nlm.nih.

gov/sra/SRX062280. First a script from the supplementary files [16] needs

to be executed for quality filtering. Afterwards, the data needs to be manually

down-sampled by extracting one of every three reads [16] and thus the smaller

version is obtained which contains 12 million read pairs.

33

http://www.ncbi.nlm.nih.gov/sra/SRX017631
http://www.ncbi.nlm.nih.gov/sra/SRX017631
http://www.ncbi.nlm.nih.gov/sra/SRX062280
http://www.ncbi.nlm.nih.gov/sra/SRX062280

As mentioned before, Ra supports only single-end reads so the paired-end data was

split into two files each containing one half of each read pair. To split and convert

the files to FASTQ format the SRA toolkit [34] was used. After the splitting, the two

created files were concatenated together and utilized for Ra’s assembly process as they

would contain single-end reads.

Testing of the Ra assembler was performed in parallel with 10 threads, as the other

assemblers in the paper [16], on a machine with following specifications:

– Software: Ubuntu 14.04.2 LTS

– Architecture: x86_64

– Processor: Intel(R) Xeon(R) CPU E5645 @ 2.4GHz

– Cores: 12

– RAM: 192GB

Ra is an OLC based assembler and it was unclear how to "fairly" set up its parameters

so they match to the De Bruijn graph assemblers (they are using k-mers of length 25

[16]). The error correction, as it is based on k-mer frequencies, was set to use the

k-mer length 25 while the minimal overlap length was set to 35 (almost the half of the

reads length) so that Ra could compete with the DBG assemblers.

Results showing the comparison between Ra, SOPAdenovo-Trans, Oases and Tri-

nity can be seen bellow scattered into several tables. Values for the other three assem-

blers were found in the SOAPdenovo-Trans paper [16]. In table 5.1 peak memory

usage and the execution times are shown. Table 5.2 is showing how many transcripts

were produced by each of the assemblers and how many genes or isoforms were reco-

vered. Only the basic Ra results are shown because error correction did not impact the

final transcripts, most likely due to the high minimal overlap length. The found trans-

cripts are first filtered so that they contain only those longer than 300bp (simple bash

script). After the filtering is done they are aligned to the corresponding genome with

BLAT [35] using minimal sequence identity of 95%. Transcripts marked as correct

are those which have one consistent alignment with ≥ 95% of their length included.

If they have two or more such alignments whether on different chromosomes or with

different orientations they are marked as chimeric. At the end, the correct alignments

are checked if they cover any annotation entirely or at least 95%. Scripts for alignment

and annotation checking were as well found in the supplementary files [16]. A deta-

iled look into execution times and descriptions of each of Ra’s modules can be seen in

tables 5.3 and 5.4. As mentioned before, the consensus phase was not executed due to

the exact overlap phase.

34

Table 5.1: Computational requirements

Method Rice Mouse

Peak memory

(GB)
Time (h)

Peak memory

(GB)
Time (h)

Ra 23 2.0 30 10.2

Ra + correction 25 2.5 30 10.7

SOAPdenovo-Trans 10.7 0.2 10.5 0.3

Trinity 11 4.3 11 4.5

Oases 9.9 0.4 9.1 0.5

Table 5.2: Classification of assembled transcripts

Rice Mouse

Ra
SOAPde

novo-Trans
Trinity Oases Ra

SOAPde

novo-Trans
Trinity Oases

>100 bp 176363 61425 107403 64490 147640 48224 96551 42993

>300 bp 18981 25800 37548 36097 15831 16286 29900 27598

Correct 8457 23682 31764 30001 5767 15959 28239 26005

Correct % 44.5 91.8 84.6 83.1 36.4 98.0 94.4 94.2

Chimeric 3782 526 2021 2185 6642 170 1101 757

Chimeric % 19.9 2.0 5.4 6.1 42.0 1.0 3.7 2.7

Coverage = 100%

Genes 41 386 472 355 211 2897 3071 2984

Isoforms 46 405 524 382 234 3505 3939 3922

Coverage ≥ 95%

Genes 100 1904 1780 1469 470 6000 5090 5563

Isoforms 113 2300 2229 1849 607 9043 7619 8975

35

Table 5.3: Detailed look of Ra’s execution times for the rice data set

Method Overview Time (min)

ra_correct 31.50

↪→ Input 19 600 898 reads 1.61

↪→ Error correction 4.18% reads corrected 24.07

↪→ ESA construction 22.06

↪→ Output 19 600 898 reads 5.82

ra_overlap 59.34

↪→ Input 19 600 898 reads 1.67

↪→ Read duplicate filtering removed 32.61% reads 16.21

↪→ ESA construction 15.63

↪→ Read overlapping found 222 974 107 overlaps 24.39

↪→ ESA construction (x 2) 19.46

↪→ Containment filtering removed 10.98% overlaps 0.33

↪→ Transitive filtering removed 72.84% overlaps 3.40

↪→ Output 19 600 898 reads and 18 689 694 overlaps 13.34

ra_layout 57.58

↪→ Input 19 600 898 reads and 18 689 694 overlaps 3.03

↪→ String graph construction 3.02

↪→ String graph simplification 47.41

↪→ Trimming (x 26)
removed 4 450 199 tips and

9 238 144 disconnected vertices
4.88

↪→ Bubble popping (x 7) removed 35 848 bubbles 42.53

↪→ Contig extraction extracted 236 700 contigs 3.76

↪→ Output 236 700 contigs 0.36

36

Table 5.4: Detailed look of Ra’s execution times for the mouse data set

Method Overview Time (min)

ra_correct 30.31

↪→ Input 24 093 968 reads 2.00

↪→ Error correction 2.63% reads corrected 20.68

↪→ ESA construction 18.81

↪→ Output 24 093 968 reads 7.63

ra_overlap 73.91

↪→ Input 24 093 968 reads 2.07

↪→ Read duplicate filtering removed 37.18% reads 18.95

↪→ ESA construction 18.28

↪→ Read overlapping found 445 272 532 overlaps 29.34

↪→ ESA construction (x 2) 22.47

↪→ Containment filtering removed 20.70% overlaps 0.88

↪→ Transitive filtering removed 70.66% overlaps 6.66

↪→ Output 24 093 968 reads and 38 471 546 overlaps 16.01

ra_layout 540.39

↪→ Input 24 093 968 reads and 38 471 546 overlaps 3.46

↪→ String graph construction 3.21

↪→ String graph simplification 469.02

↪→ Trimming (x 39)
removed 4 708 702 tips and

11 089 563 disconnected vertices
8.23

↪→ Bubble popping (x 9) removed 45 750 bubbles 460.79

↪→ Contig extraction extracted 197 181 contigs 64.41

↪→ Output 197 181 contigs 0.29

37

5.2. Discussion

The testing has shown that Ra’s performance is currently not satisfying. The high me-

mory consumption, seen in table 5.1, is expected due to the 13n memory complexity

of enhanced suffix arrays and not much can be done about it. The high memory requ-

irements were the reason the de Bruijn graphs were introduced to bioinformatics in

the first place. In addition, construction of the suffix arrays takes a good portion of

the execution time considering other parts of the correction phase or the overlap phase

as shown in tables 5.3 and 5.4. For that matter they are cached for further runs on

the same data. The tables also shows that the most time consuming step of the layout

phase is the bubble popping procedure. It needs drastic improvements which might

include parallelization and a smarter bubble search which would ignore graph areas

that have not changed between two subsequent searches. Altogether, Ra’s execution

times are higher when compared to the other assemblers which is expected due to the

OLC paradigm.

Classification of the assembled transcripts can be seen in table 5.2. For both data

sets, Ra finds the most "transcripts" although 90% of them are shorter than 300 base pa-

irs. This might be due to the high overlap length or absence of inexact overlaps which

is more probable. Inexact overlaps could be added to the prefix-sufix matches algo-

rithm described in chapter 3. Insertions, deletions or substitutions would be allowed at

each position up to a predetermined number of mismatches. Another problem with Ra

is that a lot of the longer transcripts are declared as chimeric. The contig extraction

algorithm is heuristic and most probably the cause of this issue. It could be solved by

implementing a new algorithm for longest path extraction or by implementing a scaf-

folder which would fill the gaps between contiguous areas of a graph component. As

shown at the bottom of table 5.2, Ra finds only a small fraction (5−10%) of genes and

isoforms in comparison to other RNA assembler. The cause of such poor performance

could be tied to all of the mentioned possibilities or some other issues are at stake

which are not known at this moment.

In the future, Ra should definitely be upgraded with inexact overlaps. This addition

will increase the execution time of the overlap phase but it is an essential step towards

a more efficient transcriptome assembler. Bubble popping and contig extraction should

be reimplemented as well.

38

6. Conclusion

Main focus of this thesis was transcriptome assembly, i.e. implementing a de novo

assembler in the C++ programming language. As the result Ra emerged, short for

RNA assembler, which is based on the overlap-layout-consensus paradigm. It was

designed as a library of assembly tools which methods were brought up and explained

throughout the thesis. To obtain its performance, tests were conducted on rice and

mouse transcriptome data sets. They included memory consumption, execution time

and number of genes and isoforms retrieved. Results were compared to three other

transcriptome assemblers which are based on the de Bruijn graphs. With the state

Ra is at the moment, it could not compete with the other assemblers due to the OLC

paradigm boundaries. Lack of inexact overlaps and the heuristic algorithm for longest

path retrieval in graphs had their impact on the results as well.

On the bright side, design of the implementation enables easy improvements and

can serve as a starting point in building a better and more efficient de novo OLC tran-

sriptome assembler.

39

REFERENCES

[1] NHGRI. All about the Human Genome Project (HGP). National Human Genome

Research Institute. [Online]. Available: www.genome.gov/10001772

[2] K. Wetterstrand. Dna sequencing costs: Data from the NHGRI Genome Sequen-

cing Program (GSP). [Online]. Available: www.genome.gov/sequencingcosts

[3] A. Adnan. (2010) DNA Sequencing: Method, benefits and ap-

plications. [Online]. Available: www.biotecharticles.com/Genetics-Article/

DNA-Sequencing-Method-Benefits-and-Applications-248.html

[4] Z. Khatoon, B. Figler, H. Zhang, and F. Cheng, “Inroduction to RNA-Seq and its

applications to drug discovery and development,” Drug Development Research,

2014.

[5] C. A. Maher, C. Kumar-Sinha, X. Cao, S. Kalyana-Sundaram, B. Han, X. Jing,

L. Sam, T. Barrette, N. Palanisamy, and A. M. Chinnaiyan, “Transcriptome sequ-

encing to detect gene fusions in cancer,” Nature, 2009.

[6] Genohub. Choosing the right NGS sequencing instrument for your study.

[Online]. Available: https://genohub.com/ngs-instrument-guide/

[7] J. B. W. Wolf, “Principles of transcriptome analysis and gene expression quanti-

fication: an rna-seq tutorial,” Molecular ecology resources, 2013.

[8] Illumina. Genomic sequencing: figures 6a and 6b. [Online]. Available: www.

illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf

[9] NHGRI. Figure 9: Alternative splicing. [Online]. Available: http://www.genome.

gov/25020001

[10] Wikipedia. De novo. [Online]. Available: https://en.wikipedia.org/wiki/De_novo

40

www.genome.gov/10001772
www.genome.gov/sequencingcosts
www.biotecharticles.com/Genetics-Article/DNA-Sequencing-Method-Benefits-and-Applications-248.html
www.biotecharticles.com/Genetics-Article/DNA-Sequencing-Method-Benefits-and-Applications-248.html
https://genohub.com/ngs-instrument-guide/
www.illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf
www.illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf
http://www.genome.gov/25020001
http://www.genome.gov/25020001
https://en.wikipedia.org/wiki/De_novo

[11] J. A. Martin and Z. Wang, “Next-generation transcriptome assembly,” Nature

reviews genetics, 2011.

[12] M. Šikić and M. Domazet-Lošo, “Bioinformatika,” 2013.

[13] K. Clarke, Y. Yang, R. Marsh, L. Xie, and K. K. Zhang, “Comparative analysis

of de novo transcriptome assembly,” Science China Life Sciences, 2013.

[14] L. Taylor. PHAST: OLC vs de Bruijn Assemblies. [Online]. Available:

gcat.davidson.edu/phast/olcdebruijn.html

[15] J. H. University and B. Langmead. De Bruijn Graph assembly. [Online].

Available: www.cs.jhu.edu/~langmea/resources/lecture_notes/assembly_dbg.pdf

[16] Y. Xie, G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, W. Huang, G. He, S. Gu, S. Li,

X. Zhou, T.-W. Lam, Y. Li, X. Xu, G. K.-S. Wong, and J. Wang, “SOAPdenovo-

Trans: de novo transcriptome assembly with short RNA-Seq reads,” Bioinforma-

tics, 2014.

[17] M. H. Schulz, D. R. Zerbino, M. Vingron, and E. Birney, “Oases: robust de novo

RNA-seq assembly across the dynamic range of expression levels,” Bioinforma-

tics, 2012.

[18] B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden,

M. B. Couger, D. Eccles, B. Li, M. Lieber, M. D. MacManes, M. Ott, J. Orvis,

N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C. N. Dewey, R. Hen-

schel, R. D. LeDuc, N. Friedman, and A. Regev, “De novo transcript sequence

reconstruction from rna-seq using the Trinity platform for reference generation

and analysis,” Nature protocols, 2013.

[19] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees with en-

hanced suffix arrays,” Journal of discrete algorithms, 2004.

[20] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string searc-

hes,” First annual ACM-SIAM symposium on discrete algorithms, 1990.

[21] G. Nong, S. Zhang, and W. H. Chan, “Two efficient algorithms for linear time

suffix array construction,” Computers, IEEE Transactions on, 2010.

[22] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-time longest-

common-prefix computation in suffix arrays and its applications,” Proceedings of

the 12th Annual Symposium on Combinatorial Pattern Matching, 2001.

41

gcat.davidson.edu/phast/olcdebruijn.html
www.cs.jhu.edu/~langmea/resources/lecture_notes/assembly_dbg.pdf

[23] J. T. Simpson and R. Durbin, “Efficient de novo assembly of large genomes using

compressed data structures,” Genome Research, 2011.

[24] Amos overlap format. [Online]. Available: http://www.sourceforge.net/p/amos/

mailman/message/19965222/

[25] J. T. Simpson and R. Durbin, “Efficient construction of an assembly string graph

using the FM-index,” Bioinformatics, 2010.

[26] E. W. Myers, “Toward simplifying and accurately formulating fragment assem-

bly,” Journal of Computational Biology, 1995.

[27] D. R. Zerbino and E. Birney, “Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs,” Genome Research, vol. 18, pp. 821–829, 2008.

[28] Wikipedia. Edit distance. [Online]. Available: https://en.wikipedia.org/wiki/

Edit_distance

[29] J. H. University and B. Langmead. Overlap Layout Consensus assem-

bly. [Online]. Available: www.cs.jhu.edu/~langmea/resources/lecture_notes/

assembly_olc.pdf

[30] C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment using partial

order graphs,” Bioinformatics, 2002.

[31] Wikipedia. FASTA format. [Online]. Available: https://en.wikipedia.org/wiki/

FASTA_format

[32] ——. FASTQ format. [Online]. Available: https://en.wikipedia.org/wiki/

FASTQ_format

[33] AMOS. Message Types. [Online]. Available: http://www.amos.sourceforge.net/

wiki/index.php/Message_Types

[34] Sequence Read Archive Submissions Staff. Using the SRA Toolkit to convert

.sra files into other formats. [Online]. Available: http://www.ncbi.nlm.nih.gov/

books/NBK158900/

[35] W. J. Kent, “BLAT - The BLAST-Like Alignment Tool,” Genome Research,

2002.

42

http://www.sourceforge.net/p/amos/mailman/message/19965222/
http://www.sourceforge.net/p/amos/mailman/message/19965222/
https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Edit_distance
www.cs.jhu.edu/~langmea/resources/lecture_notes/assembly_olc.pdf
www.cs.jhu.edu/~langmea/resources/lecture_notes/assembly_olc.pdf
https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTQ_format
https://en.wikipedia.org/wiki/FASTQ_format
http://www.amos.sourceforge.net/wiki/index.php/Message_Types
http://www.amos.sourceforge.net/wiki/index.php/Message_Types
http://www.ncbi.nlm.nih.gov/books/NBK158900/
http://www.ncbi.nlm.nih.gov/books/NBK158900/

De novo transcriptome assembly

Abstract

In this thesis, a de novo transcriptome assembler was implemented based on the

overlap-layout-consensus paradigm. It was written in the C++ programming langu-

age and was named Ra which is short for RNA assembler. Its overlap phase re-

lies on the enhanced suffix arrays and reproduces exact overlaps between input re-

ads. The layout phase uses several methods for graph simplification which includes

trimming and bubble popping. Due to the exact overlap phase there is no need for

a consensus phase at this moment but there exists one which is based on the par-

tial order alignment algorithm. Conducted tests have shown that Ra needs improve-

ments to compete with other transcriptome assemblers. Source code is available at

https://github.com/rvaser/ra.

Keywords: RNA, transcriptome assembly, overlap-layout-consensus, suffix array, graphs

De novo sastavljanje transkriptoma

Sažetak

U ovom radu, implementiran je de novo asembler transkriptoma koji je baziran

na preklapanje-razmještaj-konsenzus paradigmi. Napisan je u programskom jeziku

C++ i imenovan je Ra što je skraćeno od RNA asembler. Faza preklapanja bazirana

je na poboljšanom sufiksnom polju i reproducira egzaktna preklapanja izmed̄u ulaz-

nih očitanja. Faza razmještaja koristi nekoliko metoda za pojednostavljenje grafova

koji su izgrad̄eni nad očitanjima i njihovim preklapanjima. Kako faza preklapanja

pronalazi samo egzaktne parove, trenutno ne postoji potreba za fazom konsenzusa ali

ona je svejedno dio implementacije i bazirana je na partial order alignment algoritmu.

Provedeni testovi upućuju da su Ra asembleru potrebna dodatna poboljšanja kako bi

mogao konkurirati drugim asemblerima transkriptoma. Izvorni kod dostupan je na

https://github.com/rvaser/ra.

Ključne riječi: RNA, sastavljanje transkriptoma, preklapanje-razmještaj-konsenzus,

sufiksno polje, grafovi

https://github.com/rvaser/ra
https://github.com/rvaser/ra

	Introduction
	Preliminaries
	RNA sequencing
	Transcriptome assembly
	Overlap-layout-consensus
	De Bruijn graphs

	Methods
	Enhanced suffix array
	Algorithms

	Error correction
	Overlap phase
	Layout phase
	Graph simplification
	Contig extraction

	Consensus phase

	Implementation
	Overview
	External dependencies
	Afgreader
	EDLIB
	CPPPOA

	Code structure

	Results
	Testing
	Discussion

	Conclusion
	References

