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1. Introduction

1.1. Bioinformatics

Bioinformatics is a field of science where computer resources are used for analysis of

genome, proteins and other biological compounds.

1.2. Nanopore sequencing

A lot of problems that are dealt with in bioinformatics involve analysis of DNA or

RNA sequences. Question arises: how exactly do we "read" those sequences from the

nature? This is where the nanopore sequencing comes in.

Sequences are passed through the nanopore which measures ionic current that

changes depending on the nucleotides that are in the pore. There are usually 5 or 6

nucleotides in the pore at the same time due to the pores’ size. Information about the

ionic current signal is then usually used for basecalling (converting a raw current signal

to a specific sequence of nucleotides).

1.3. Self-supervised learning

Today we have an enormous amount of unlabeled data, but unfortunately most of the

machine learning algorithms are restricted to using only labeled data, which is often

very sparse and expensive to label. One might ask is there any way we could use

unlabeled data to improve performance and accuracy of our models. That is exactly

what self-supervised learning does.

Self-supervised learning, often referred to as the dark matter of intelligence [17],

is a method of pretraining models with unlabeled data. For example, models are often

tasked to predict future from the present or vice versa. Pretrained parameters of the

model are then used as the "starting point" for the downstream task. This approach
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Figure 1.1: Example of basecalling "workflow".

achieved fantastic results in natural language processing and it is becoming a very

important part of computer vision as well.
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2. Data

For model training and validation we used the same data as the popular basecaller

Bonito. Data has been divided into two parts. One part of data was used for model

self-supervised pretraining and other for the actual training on the downstream task

(basecalling). Pretraining data is about five times larger than the downstream task

data.

Information about signals is stored in "hdf5" files. This file format is a hierarch-

ical data format and it contains all relevant informations about nanopore signal. It is

important to note that signals are stored in a discrete form and if we want to get actual

values of ionic current (in picoamperes), we have to transform them into continuous

signals:

scale = range/digitisation

continuous = scale ∗ (discrete+ offset) (2.1)

Signals are normalised with "med-mad" normalisation:

signal = (signal −median(signal))/mean_absolute_deviation(signal) (2.2)

After normalisation, signals are chunked into smaller segments to prevent memory

issues.

Nanopore signals are approximately rectangular.
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Figure 2.1: Example of a single normalised nanopore signal chunk.
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3. Pore model

Before we explain which methods are used and how, we have to define what our model

consists of. Pore model is composed of two main components: feature encoder and

transformer. This model structure is inspired by a model used in Wav2vec 2.0 [2].

Feature encoder is built of multiple convolutional blocks. Each block contains

convolutional layer, batch normalisation and Gaussian Error Linear Unit (GELU) ac-

tivation function.

Outputs of feature encoder are passed to transformer [16]. Transformer inputs are

encoded with positional embedding just like in popular natural language processing

model BERT [9].

Pore model is usually followed by another smaller model depending on a task it

is solving. For example, during basecalling few linear projection layers could be "at-

tached" to it.

Figure 3.1: Pore Model.
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3.1. Model implementation

Feature encoder consists of 4 blocks. First block outputs 64, second 128, third 256

and fourth 512 channels. Each block uses kernel size of 3 and all blocks use stride 2

besides the last one which uses stride 1.

Transformer uses 8 attention heads and it consists of 10 sub-layers. Dimension of

the feed-forward network inside of transformer is set to 2048.
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4. Contrastive Predictive Coding

Main idea of contrastive predictive coding (CPC) [15] is simple: predict "future" parts

of the signal from the "current" context. In other words, we use output of transformer

(context) to predict outputs of feature encoder (latent representations) in the future time

steps. We don’t just use any context vector, but only the latest one since that one is

closest to the "future" we are predicting.

Figure 4.1: Contrastive predictive coding. "Latest" context vector is used to predict "future"

latent representations.

Under the hood, CPC actually tries to maximise mutual information between con-

text (c) and future latent representation (z):

I(z, c) =
∑
z,c

p(z, c) log(
p(z|c)
p(z)

) (4.1)

Instead of directly modeling the mutual information, CPC models density ratio fk(zt+k, ct)

which is proportional to p(zt+k|ct)/p(xt+k). Density ratio is defined as:

fk(zt+k, ct) = exp(zTt+kWkct) (4.2)
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where zt+k is latent representation of the signal in k-th future time step and ct repres-

ents "present" (k = 0) context. It is noteworthy to mention that prediction of each

future time step uses separate weights (Wk) for linear projection of context vector. Fi-

nally, CPC uses density ratio in InfoNCE loss. Let us assume that size of a batch is

N :

Lk = −
i=N∑
i=1

log
fk(z

i
t+k, c

i
t)∑N

j=1 fk(z
j
t+k, c

j
t)

(4.3)

L =
∑
k

Lk (4.4)

It is easy to see that InfoNCE loss is in fact categorical cross-entropy loss where we

want to choose correct (positive) latent representation from a certain number of options

(negatives). Negatives are sampled from other signals in the batch. For example, if we

are predicting latent representation in k-th time step, negatives will be acquired by

taking k-th output of feature encoder from all other batch samples.

Convenient thing about CPC is that we can easily adjust difficulty of the self-

supervised task by setting how many future time steps model is tasked to predict. The

greater this number is, the more difficult task is.

4.1. Implementation details

Implementation of CPC algorithm has been very straightforward. Only somewhat

problematic thing was a fact that we are using transformer as the context encoder in-

stead of one-directional RNN (recurrent neural network) which is usually used with

CPC. This is problematic because transformer is bidirectional and if nothing is done,

context could "see" the future. It is very important to prevent this from happening

otherwise CPC pretraining task would be too easy and useless. We averted this by

masking transformer inputs of "future" time steps.

8
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Algorithm 1 CPC algorithm [12]
Input: feature encoder fe, transformer trnf , batch size N , prediction window size

P , weights Wk (k ∈ {1, ..., P}).
for minibatch {s1, ..., sN} do

Randomly choose "current" (present) timestep t

for i ∈ {1, ..., N} do
zi = fe(si)

ci = trnf(zi){transformer inputs that come after timestep t are masked}

end for
{z, c => TxNxF}

L = 0.0

for j ∈ 1, ..., P do
density_ratio = exp(z[t+ j]Wkc[t]

T ) {NxN}

{id(D) => identity matrix with dimensions DxD}

{sum(M ) => sums all elements of matrix M}

L = L− sum(id(N) log(softmax(log(density_ratio))))

end for
Update transformer, feature encoder and weights Wk to minimize loss L

end for

4.2. Results

When we first tried out CPC on Pore model, it achieved decently high accuracy when

predicting future time steps, even for time steps that are relatively far away from the

"present".

We quickly realised that feature encoder had a very wide reception field, which

might have made the future prediction task too easy so we decided to try out a bit

"thinner" feature encoder. We decided to replace feature encoder with a single-layered

convolutional network which had much narrower field of view.

This time self-supervised task accuracy was much worse. Model could only de-

cently predict immediate future step.

In both cases pretraining did not cause any boosts in the downstream task (basecall-

ing) performance. We did not manage too find the reason why this happens but it is

possible that CPC has trouble predicting future latent representations because of sig-

nals "jumpy" (rectangular) nature.
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Figure 4.2: CPC prediction accuracy for each future time step with a feature encoder that had a

very wide reception field. Model was tasked to predict 35 future time steps. Baseline accuracy

is 0.03125.

Figure 4.3: CPC prediction accuracy for each future time step. Note that in this case we used

"thin" feature encoder that consisted of only one-layered convolutional neural network. Model

was tasked to predict 7 future time steps. Baseline accuracy is 0.03125.
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5. Representation learning algorithms

Representation learning algorithms are family of self-supervised methods which take

two or more augmentations of a single instance (in our case signal chunks) and then try

to learn a good representation of the original (non-augmented) signal. This task usually

transfers well into downstream tasks and boosts model’s accuracy and performance.

For these methods, we could not use Pore model as it is so we had to attach a

smaller model to it. This attached model is dropped once the pretraining is done and

Pore model is "imported" into basecaller (or whatever else the downstream task is).

Figure 5.1: Model used with representation learning algorithms. N is size of a batch, L is

length of the signal chunk and R is dimensionality of the final signal representation.

Attached model consists of two main parts: convolutional neural network (CNN)

and a final linear projection. CNN is built of blocks each of whichd contains convo-

lutional layer, batch normalisation, rectified linear unit activation function and a max

pooling layer. Output of the CNN is flattened and passed to final linear projection block

11
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which is composed of 2 linear projection layers. First linear projection is followed by

batch normalisation and rectified linear unit activation function.

In the end, we decided that CNN will consist of only one block where convolutional

network uses kernel size 7 and stride 1. Max pooling uses kernel size 4 and stride 4.

Linear projection block differed from algorithm to algorithm since each method has its

preferences when it comes to representation dimensionality.

5.1. Signal augmentations

Most important part of representation learning methods are augmentations. This is also

their biggest flaw because it is not always easy to come up with good augmentations

that will result in high-quality representations.

5.1.1. Unsuccessful attempts

Before we came up with good combination of augmentations, we tried a lot of aug-

mentations that proved to give a pretty bad representation of signal which did not cause

any improvements on downstream task. At first, we quite underestimated the import-

ance of this segment but we quickly realised that we can’t just use any augmentation.

One of these (ineffective) augmentations was shuffle augmentation. Main idea is

to split signal into certain number of segments and then shuffle their order.

Figure 5.2: Example of shuffle signal augmentation. In this case signal is divided in 8 segments

and then those segments are shuffled in random order.

We also tried out adding moving average into the mix to emphasize the "rectangu-

larity" of the signal. We tried using both small and big moving average windows but

in both cases, model was unable to learn good signal representations.
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Figure 5.3: Example of moving average augmentation. Width of the moving window is 7.

Random signal crop augmentation is inspired by similar augmentations used in

computer vision [4]. Certain percentage of the signal is taken and then widened with

linear interpolation to the length of the original chunk.

Figure 5.4: Random crop augmentation. Random part of the signal is "cut out" (red color) and

then stretched out to the length of the chunk it was taken from.

Signal flip is a rather straightforward augmentation. We used two variants: hori-

zontal and vertical flip. Horizontal version reverses the other order of signal points and

vertical one just flips the signal around the x-axis.

As mentioned before, none of the previously described augmentations provided

good enough representations. In the end, we decided to only use noise and drop-point

augmentation since this combination gave the best signal representation which boosted

downstream tasks accuracy.

13



Figure 5.5: Example of horizontal and vertical signal flip.

5.1.2. Noise

Noise augmentation is probably the simplest one we tried. Signal is augmented by

adding simple gaussian noise to each signal point:

noised_signal = signal + α ∗N(0, 1) (5.1)

N(0, 1) generates a vector filled with random numbers from normal distribution (with

mean 0 and standard deviation equal to 1). Generated vector has the same dimension-

ality as the signal that is augmented. We also used noise factor (α) with which one

can easily adjust how much the signal will be distorted. During pretraining, we set the

noise factor to 0.25.

5.1.3. Drop-point augmentation

Drop-point augmentation is in our case the most important augmentation. Without it,

we were not able to achieve notable improvements on the downstream task. Despite

its importance, it is not overly complex. All it does is drop each signal point with
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Figure 5.6: Noise augmentation. Noise factor is 0.25.

a certain probability. Implementation-wise this might cause incompatibility with the

model and other augmentations since we shorten the signal. We prevent such problems

by adding padding to the shortened signal and generating a mask which indicates which

part of the signal is padding and which is not. Drop chance is obtained with uniform

distribution from a given interval. We used values between 0.25 and 0.38.

Figure 5.7: Drop-point augmentation.

5.2. SimCLR

SimCLR [6] is the first self-supervised contrastive learning algorithm and most mod-

ern self-supervised methods (especially in the computer vision) are in one way or an-

other inspired by this one. Main idea is to create multiple views of the signal and

then make the representations of those views as similar as possible. But there is one

problem: how do we prevent model from finding the trivial solution where all signals

have the same representation? SimCLR prevents this by maximizing similarity with

positives (augmentations of the same signal) and minimizing similarity with negatives

15



(augmentations of other signals).

Figure 5.8: SimCLR method.

Loss for a positive pair of signal representations ri and rj is defined as follows:

l(ri, rj) = − log
exp(sim(ri, rj)/τ)∑2N
k=1 exp(sim(ri, rk)/τ)

(5.2)

L =
∑

(ri,rj)∈positive_pairs

(l(ri, rj) + l(rj, ri)) (5.3)

N is size of a single batch and two augmentations are generated for each signal chunk

in the batch. Parameter τ represents cross entropy temperature.

5.2.1. Implementation

In our SimCLR implementation final representation dimensionality is 256. For train-

ing, we used Adam [13] optimizer with learning rate 3e-5. Although SimCLR "prefers"

larger batch sizes we were forced to use a relatively small size (32) due to hardware
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limitations. Cross entropy temperature τ was set to 0.1. As similarity function we used

cosine similarity since that type of similarity was also used in the original paper [6].

Algorithm 2 SimCLR train algorithm
Input: model m, temperature τ , batch size N , set of signal augmentations A.

for minibatch {s1, ..., sN} do
for si in minibatch (i ∈ [1, N ]) do

randomly choose two augmentations a1 and a2 from set A

xi, xi+N = a1(si), a2(si)

ri, ri+N = m(xi), m(xi+N)

end for
L = − 1

2N

∑N
j=1(log

exp(sim(rj ,rj+N )/τ)∑2N
k=1 exp(sim(rj ,rk)/τ)

+ log
exp(sim(rj+N ,rj)/τ)∑2N

k=1 exp(sim(rj+N ,rk)/τ)
)

update model m parameters to minimize loss L

end for

5.2.2. Results

5.3. MoCo

Biggest flaw of the SimCLR method is that it is very dependant on big batch sizes

which is not always convenient especially if we don’t have sufficient computational

power. MoCo [11] negates this limitation by not using negatives from the same batch

but from the special representation queue which is updated in each training step.

First part of the algorithm is basically the same as in the SimCLR. Two views of the

original signal are generated with augmentations. After that one of the views (query)

is passed through the model (encoder) and the other view (key) is passed through

the model with same architecture but with different parameters (momentum encoder).

Once we get query (q) and key (k+) representations we use them in contrastive loss:

L = − log
exp(sim(q, k+)/τ)∑

k∈queue exp(sim(q, k)/τ)
(5.4)

Once the loss is calculated, oldest representation in the queue is replaced with the new

key representation.

At first glance, the fact that query and key are not passed through the same model

(like in SimCLR) might seem strange but there is a very good reason why this is neces-

sary. If we used the same model to get representations of both query and key, model

17
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would have quite an easy job detecting the representations in queue that are the oldest

since the model as whole changes relatively drastically during training. Because of

that we need a key encoder whose parameters (θkey_encoder) are updated a bit "slower"

and we can do this by updating them like this:

θkey_encoder = mθkey_encoder + (1−m)θquery_encoder (5.5)

Hyper-parameterm is momentum coefficient which is usually somewhere between 0.9

and 0.999. Query encoder parameters (θquery_encoder) are updated as usual.

Figure 5.9: MoCo algorithm. Algorithm requires two separate models with the same archi-

tecture. Encoder (query encoder) is updated via stohastic gradient descent and momentum

encoder (key encoder) is updated via momentum.
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5.3.1. Implementation

One thing we have to clear up is what happens at the very beginning of training when

the representation queue is empty. To be completely accurate, queue will never be

empty. Once the queue is initialized, it is filled with randomly initialized vectors that

simulate signal representations. This doesn’t cause problems during training because

these "dummy" representations will quickly be replaced with real ones.

For MoCo self-supervised training we used same hyper-parameters as in SimCLR.

We set queue size to 8192 and update momentum to 0.999.

Algorithm 3 MoCo train algorithm
Input: model architecture arch, temperature τ , batch sizeN , set of signal augment-

ations A, momentum m, representation queue size K.

query_encoder, key_encoder = init_model(arch), init_model(arch)

key_encoder.parameters = query_encoder.parameters

queue = init_queue(K)

for minibatch {s1, ..., sN} do
for si in minibatch (i ∈ [1, N ]) do

randomly choose two augmentations a1 and a2 from set A

qi, ki+ = query_encoder(a1(si)), key_encoder(a2(si))

end for
L = − 1

N

∑N
i=1 log

exp(sim(qi,ki+)/τ)∑
k∈queue exp(sim(qi,k)/τ)

update query_model parameters to minimize loss L

key_model.param = m * key_model.param + (1−m) * query_model.param

Replace oldest queue entries with ki+, i ∈ {1, ..., N}
end for

5.3.2. Results

During self-supervised pretraining model quickly achieved nearly perfect accuracy on

the training set (accuracy is defined as the accuracy of choosing positive among neg-

atives). On the validation set, on the other hand, it took few epochs before such thing

happened. Loss for some reason started rising after sixth epoch so we soon stopped

pretraining.
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Figure 5.10: Training top-1 accuracy (top left), top-5 accuracy (top right) and loss (bottom

middle) during MoCo self-supervised pretraining.

Figure 5.11: Validation top-1 accuracy (top left), top-5 accuracy (top right) and loss (bottom

middle) during MoCo self-supervised pretraining.
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Because model got to the perfect accuracy very fast we thought that self-supervised

task was a bit too easy and we doubted that model would cause any changes on the

downstream task training. However, pretraining managed to boost the accuracy on the

downstream task for about 0.1%.

Figure 5.12: Comparison between randomly initialised basecaller ("baseline") and basecaller

with pretrained Pore model ("moco-pretrained"). Figure shows training loss (top), validation

loss (middle) and validation accuracy (bottom) on the basecalling task.
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5.4. SimSiam

SimSiam [6] is an interesting method for the fact that it does not require negatives

during training like SimCLR and MoCo do. Instead, it uses stop-gradient functionality

to prevent collapsing solution.

As always, two views of the original signal are created with augmentations. Both

views are then passed through the model we are pretraining (encoder) to get representa-

tions. Finally, these representations are also passed through the special model attached

to the encoder (predictor). This projection head usually consists of few linear layers

and dimension of input and output vectors is the same. In our case, it is built of two

linear projection layers, first of which is followed by batch normalization and ReLU

activation function.

Let us assume we augmented some signal chunk and got two signal views: v1 and

v2. Main goal of the SimSiam algorithm is to make v2 encoder output and v1 predictor

output as similar as possible. As mentioned before, it is very important to prevent

trivial solution so we have to use stop-gradient in the computational "branch" of v2.
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Figure 5.13: SimSiam algorithm. Both signal views are passed through the same encoder.

5.4.1. Implementation

Stop-gradient might seem like something complicated to implement at first but is rather

simple. In most modern deep learning frameworks like Pytorch and Tensorflow you

can easily detach tensors from the computational graph and essentially do what stop-

grad operation does.

Predictor model block has the same architecture as the linear projection block in

the encoder we described at the beginning of this chapter.

It is also worth noting that both signal views are passed through both encoder and

predictor. In the end we want to maximize cosine similarity between output of the

predictor of each signal view to the output of the encoder of the "paired" view.

Final representation dimensionality is 1024. For training, we once again used

23



Adam [13] optimizer with learning rate 3e-4. Batch size was set to 64.

Algorithm 4 SimSiam train algorithm
Input: model m, predictor p, batch size N , set of signal augmentations A.

for minibatch {s1, ..., sN} do
for si in minibatch (i ∈ [1, N ]) do

randomly choose two augmentations a1 and a2 from set A

xi1, xi2 = m(a1(si)), m(a2(si))

hi1, hi2 = p(xi1), p(xi2)

end for
{sg => STOP-GRADIENT}

L = 1
N

∑N
i=1(2.0− cosine_sim(sg(xi1), hi2)− cosine_sim(sg(xi2), hi1))

update model m and predictor p parameters to minimize loss L

end for

5.4.2. Results

During self-supervised pretraining loss was very unstable and it often spiked. Valida-

tion loss started stagnating after seventh epoch.

Figure 5.14: Training (left) and validation (right) loss during SimSiam self-supervised pre-

training.

SimSiam had a similar performance on the downstream task (basecalling) to MoCo.

It improved basecalling validation accuracy for 0.1%.
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Figure 5.15: Comparison between randomly initialised basecaller ("baseline") and basecaller

with Pore model that was pretrained with SimSiam algorithm ("simsiam-pretrained"). Figure

shows training loss (top), validation loss (middle) and validation accuracy (bottom) on the

basecalling task.
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5.5. BYOL

BYOL [10] is in a way a mixture of MoCo and SimSiam algorithms. It uses special mo-

mentum updated encoder but it does not require negative samples during training. All

things considered, BYOL doesn’t really contain any components we haven’t explained

in previous chapters. It pretty much works just like SimSiam method but instead of

stop-gradient operation it uses momentum encoder that functions the same as the one

in MoCo.

Figure 5.16: BYOL algorithm.

5.5.1. Implementation

We trained representation encoder with Adam optimizer and we used learning rate of

3e-4. Momentum encoder was updated with exponential moving average with mo-

mentum 0.998. Representation dimensionality is set to 1024.
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Algorithm 5 BYOL train algorithm
Input: model architecture arch, predictor p, batch size N , set of signal augmenta-

tions A, momentum m.

online, target = init_model(arch), init_model(arch)

target.parameters = online.parameters

for minibatch {s1, ..., sN} do
for si in minibatch (i ∈ [1, N ]) do

randomly choose two augmentations a1 and a2 from set A

xi1, xi2 = online(a1(si)), online(a2(si))

hi1, hi2 = p(xi1), p(xi2)

ri1, ri2 = target(xi1), target(xi2)

end for
L = 1

N

∑N
i=1(2.0− cosine_sim(ri1, hi2)− cosine_sim(ri2, hi1))

update online encoder and predictor p parameters to minimize loss L

target.param = m * target.param + (1−m) * online.param

end for

5.5.2. Results

Self-supervised pretraining with BYOL was stable and loss kept steadily declining. At

one point training loss significantly dropped in value and started stagnating.

Figure 5.17: Training (left) and validation (right) loss during BYOL self-supervised pretrain-

ing.

Despite its relatively successful pretraining, BYOL did not increase performance

of the basecaller. Moreover, it worsened the accuracy and it heightened the loss. We

also tried to "import" parameters of the momentum encoder (instead of encoder) but
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results were the same.

Figure 5.18: Comparison between randomly initialised basecaller ("baseline") and basecaller

with Pore model that was pretrained with BYOL algorithm ("byol-pretrained"). Figure shows

training loss (top), validation loss (middle) and validation accuracy (bottom) on the basecalling

task.
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5.6. DINO

DINO [5] draws a great deal of inspiration from knowledge distillation methods. Know-

ledge distillation is often used when we want to transfer knowledge from a larger model

(teacher) to a smaller one (student). Main idea is to match output distributions of the

teacher and the student. We can do this my minimizing cross entropy between those

two distributions. But how can we use such approach for self-supervised learning?

We do not have labels and we do not have some trained model we could use a teacher

model.

Although we do not have specific labels, we know that two views of the same signal

should have the same output distribution (representation). When it comes to teacher

model, DINO uses the momentum encoder (same as MoCo) which is slowly updated

in the direction of student’s update. It is important to note that, unlike in classical

knowledge distillation, student and teacher models have the same architecture. They

only differ in the way they update their parameters.

Figure 5.19: DINO algorithm.
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To prevent solution collapse, DINO also introduced centering and sharpening of the

teacher output (softmax input). Center is one of the parameters in the teacher model

and it is subtracted from the output of the teacher model. It is updated similarly to

other teacher’s parameters (with exponential moving average):

c = mcc+ (1−mc)
1

N

N∑
j=1

teacher(si) (5.6)

where mc is center update momentum, N batch size and t(si) is output of teacher

model for the input signal si.

Main goal of centering is to prevent one of the output dimensions dominating, and

thus collapsing the solution. On the other hand, DINO also uses distribution sharpening

which is achieved with low softmax temperature values. This prevents collapse to

uniform distribution.

DINO defines loss for a pair of positive signal views as follows:

l(s1, s2) = −softmax(student(s1)/τs) log(softmax(teacher(s2 − center)/τt))
(5.7)

L(s1, s2) = l(s1, s2) + l(s2, s1) (5.8)

5.6.1. Implementation

When it comes to training, as with all other algorithms, we used Adam optimizer.

Learning rate was set to 3e-5 and batch size to 32. Student softmax temperature is 0.1

and teacher softmax temperature has a value of 0.06. Center update momentum is 0.9

and teacher network update momentum is 0.999.
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Algorithm 6 DINO train algorithm
Input: model architecture arch, batch size N , set of signal augmentations A, center

momentum mc, teacher momentum mt, student temperature τs, teacher temperature

τt.

student, teacher = init_model(arch), init_model(arch)

teacher.parameters = student.parameters

for minibatch {s1, ..., sN} do
for si in minibatch (i ∈ [1, N ]) do

randomly choose two augmentations a1 and a2 from set A

xi = student(a1(si))

yi = teacher(a2(si))

xi+N = student(a2(si))

yi+N = teacher(a1(si))

end for{mean(v) = 1
d

∑d
j=1 vj}

L = 1
2N

∑2N
i=1(mean(−softmax(xi/τs) ∗ log(softmax((yi − center)/τt))))

update student parameters to minimize loss L

teacher.param = mt * teacher.param + (1−mt) * student.param

center = mc * center + (1−mc)
1
2N

∑N
i=1(yi1 + yi2)

end for

5.6.2. Results

Training and validation kept declining through the whole self-supervised DINO pre-

training. As the pretraining progressed training loss became a bit unstable but it always

kept a relatively low value.

Figure 5.20: Training (left) and validation (right) loss during DINO self-supervised pretrain-

ing.
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Pretrained Pore model considerably lowered the training loss on basecalling task

but validation accuracy was improved for only 0.1% just like in most previously ex-

plained methods.

Figure 5.21: Comparison between randomly initialised basecaller ("baseline") and basecaller

with Pore model that was pretrained with DINO algorithm ("dino-pretrained"). Figure shows

training loss (top), validation loss (middle) and validation accuracy (bottom) on the basecalling

task.

5.7. Barlow Twins

Barlow Twins [18] is a very unique algorithm because unlike most others self-supervised

representation learning methods, it doesn’t require some special methods of preventing
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collapsed solutions. Its loss is defined in such way that such situation is impossible and

this makes this algorithm very simple to implement.

Two views of the same signal are passed through the same model (encoder) to get

their vector representations. Cross-correlation matrix is then calculated from those

two representations and main goal of this algorithm is to make this matrix as close as

possible to the identity matrix.

Barlow Twins’ loss is defined as follows:

L =
D∑
i=1

(1− Cii) + λ

D∑
i=1

∑
j 6=i

C2
ij (5.9)

where D is representation dimensionality and λ is a trade off hyper-parameter with

which we can set how "important" is the second component of the loss in comparison

to the first one. C is cross-correlation matrix and it is calculated like this:

Cij =

∑N
b=1 r1,b,ir2,b,j√∑N

b=1 r
2
1,b,i

√∑N
b=1 r

2
2,b,j

(5.10)

where b is batch index (N is batch size), i and j represent a specific dimension in

the representation. Representations are normalised along the batch dimension so the

values in matrix C can be only in the interval between -1 and 1 (as it should be).

But why does this work? It doesn’t feel very intuitive to force representation com-

ponents to be as little as correlated as possible. Answer lies in the information bot-

tleneck theory. Basically, what we do by forcing the decorrelation between repres-

entation components is that we prevent model from learning redundant information

(e.g. information about augmentations, etc.) and we make sure it learns only the vital

information, which in our case are the features that make nanopore signal look and

behave the way it does.
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Figure 5.22: Barlow Twins algorithm.

5.7.1. Implementation

To optimize calculation of the loss, we had to fully utilize matrix computation methods.

Once we calculated the cross-correlation matrix, we subtracted identity matrix from it.

We then squared all values in the matrix and multiplied off-diagonal values with λ

hyper-parameter. In the end, we just summed up all values in the final matrix to get the

value of loss function.

For training we used Adam optimizer with learning rate of 1e-5. Hyper-parameter

λ was set to 5e-3. We used pretty large representation dimensionality (2048) since

Barlow Twins greatly benefits from such representations. Batch size was set to 64.
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Algorithm 7 Barlow Twins train algorithm
Input: model m, , batch size N , representation dimensionality D, trade off hyper-

paramter λ, set of signal augmentations A.

for minibatch {s1, ..., sN} do
for si in minibatch (i ∈ [1, N ]) do

randomly choose two augmentations a1 and a2 from set A

r1i, r2i = m(a1(si)), m(a2(si))

end for
{r1, r2 => NxD}

for i ∈ {1, ..., N} do
r1i =

r1i− 1
N

∑N
k=1 r1k

std(r1)

r2i =
r2i− 1

N

∑N
k=1 r2k

std(r2)

end for
C =

rT1 r2
N

{id(D) => creates identity matrix with dimensions D x D}

L = sum((C − id(D))2λ(1− id(D)))

update model m parameters to minimize loss L

end for

5.7.2. Results

Unlike most other self-supervised representation learning methods, Barlow Twins’

self-supervised validation loss did not start stagnating after 5-6 epochs but it kept de-

clining for much longer. Another interesting thing is that there were really no "spikes"

in the loss that we often encountered in other self-supervised methods.

Figure 5.23: Training (left) and validation (right) loss during Barlow Twins self-supervised

pretraining.
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Barlow Twins improved basecalling accuracy for about 0.3%. At the start of the

basecalling training, pretrained Pore model did not act much different than the ran-

domly initialized one (training loss was more or less the same) but as the training went

on, decrease in the training loss was starting to get more and more noticeable.

Figure 5.24: Comparison between randomly initialised basecaller ("baseline") and basecaller

with Pore model that was pretrained with Barlow Twins algorithm ("barlow-pretrained"). Fig-

ure shows training loss (top), validation loss (middle) and validation accuracy (bottom) on the

basecalling task.
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6. Conclusion

In this thesis we explored various self-supervised algorithms and their effects on the

nanopore sequencing deep learning model.

We tried out contrastive predictive coding method in which we tried to predict

future latent representations. Sadly, this algorithm did not manage to improve per-

formance of the model on the downstream task.

We also implemented a lot of self-supervised representation learning methods which

improved model’s basecalling accuracy. This improvement was especially noticeable

when we used Barlow Twins algorithm which boosted basecalling accuracy for around

0.3%.

Although we showed that self-supervised methods are very usable in the domain of

nanopore sequencing, there is still a lot of room for improvement. As the more obvious

route of improvement one could take a look at additional signal augmentations in self-

supervised representation learning methods. As we mentioned before, we only used

two augmentations and introducing more good augmentations would probably result

in higher-quality representations and therefore better performance on the downstream

task.

Another idea worth investigating are semi-supervised methods like PAWS [1] and

AdaMatch [3]. These approaches are very similar to classical self-supervised methods

but unlike them, they also utilise a small amount of labeled data (usually to create some

sort of pseudo-labels for unlabeled data).

All in all, we proved that self-supervised methods are a very powerful tool in ma-

chine learning and hope that our work will help in development of future sequencing

tools and basecallers.

37



BIBLIOGRAPHY

[1] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand

Joulin, Nicolas Ballas, i Michael Rabbat. Semi-supervised learning of visual fea-

tures by non-parametrically predicting view assignments with support samples,

2021.

[2] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, i Michael Auli. wav2vec

2.0: A framework for self-supervised learning of speech representations. 2020.

[3] David Berthelot, Rebecca Roelofs, Kihyuk Sohn, Nicholas Carlini, i Alex Kur-

akin. Adamatch: A unified approach to semi-supervised learning and domain

adaptation, 2021.

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, i

Armand Joulin. Unsupervised learning of visual features by contrasting cluster

assignments, 2021.

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr

Bojanowski, i Armand Joulin. Emerging properties in self-supervised vision

transformers, 2021.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, i Geoffrey Hinton. A simple

framework for contrastive learning of visual representations, 2020.

[7] Xinlei Chen i Kaiming He. Exploring simple siamese representation learning,

2020.

[8] Xinlei Chen, Haoqi Fan, Ross Girshick, i Kaiming He. Improved baselines with

momentum contrastive learning, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, i Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2018.

38



[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,

Rémi Munos, i Michal Valko. Bootstrap your own latent: A new approach to

self-supervised learning, 2020.

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, i Ross Girshick. Momentum

contrast for unsupervised visual representation learning, 2020.

[12] John Hughes. How to boost emotion recognition per-

formance in speech using contrastive predictive coding,

2020. URL https://medium.com/speechmatics/

boosting-emotion-recognition-performance-in-speech-using-cpc-ce6b23a05759.

[13] Diederik P. Kingma i Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[14] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, i Kunio

Kashino. Byol for audio: Self-supervised learning for general-purpose audio

representation, 2021.

[15] Aaron van den Oord, Yazhe Li, i Oriol Vinyals. Representation learning with

contrastive predictive coding, 2018.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, i Illia Polosukhin. Attention is all you need,

2017.

[17] Ishan Misra Yann LeCun. Self-supervised learning: The dark matter

of intelligence, 2021. URL https://ai.facebook.com/blog/

self-supervised-learning-the-dark-matter-of-intelligence.

[18] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, i Stéphane Deny. Bar-

low twins: Self-supervised learning via redundancy reduction. arXiv preprint

arXiv:2103.03230, 2021.

39
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