
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS No. 734

De novo metagenomic assembly
using Bayesian model-based

clustering
Mirta Dvorničić

Zagreb, June 2014

iii

CONTENTS

List of Figures vi

List of Tables vii

1. Introduction 1

2. Background 3
2.1. Metagenomics . 3
2.2. Genome sequencing . 4
2.3. Genome assembly . 5

3. Materials and methods 8
3.1. Assembly graph construction . 9
3.2. Hierarchical clustering . 10
3.3. Model selection . 13

3.3.1. Lander-Waterman model . 13
3.3.2. Parameter estimation . 15
3.3.3. Bayesian information criterion 16

3.4. Scaffolding . 17

4. Implementation 19
4.1. Overview . 19
4.2. Installation . 22
4.3. Usage . 23

4.3.1. Configuration file . 23
4.3.2. Running . 24
4.3.3. Output files . 24

iv

5. Results 25
5.1. Datasets . 25

5.1.1. Simulated datasets . 25
5.1.2. Real datasets . 26

5.2. Contigging, read mapping and edge bundling 27
5.3. Assembly graph partitioning and scaffolding 29
5.4. Running time and memory requirements 40

6. Conclusion 42

Bibliography 43

v

LIST OF FIGURES

3.1. Overview of the pipeline. 8
3.2. A surface plot of contig distance function defined with Equation 3.1. . 12

5.1. Violin plots showing the distribution of relative species abundance in
simLC, simMC, simHC and oral biome datasets. 26

5.2. Violin plots showing the distribution of contig lengths for Velvet and
SOAPdenovo assembly. 28

5.3. Bar plots showing the number of contigs labeled as unique, repeat and
misassembly for Velvet and SOAPdenovo assembly. 28

5.4. Comparison between sensitivity and specificity in detecting erroneous
edges in the assembly graph achieved by Sigma and Bambus2 with
Velvet as the contig assembly. 33

5.5. N50 and corrected N50 of the final scaffolds produced by OperaMS
using different paired-end/mate-pair libraries and their combinations. . 34

5.6. Violin plots showing the distribution of genome contig and scaffold
N50 for OperaMS with SOAPdenovo as the contig assembly. 36

5.7. Bar plots showing the log of genome scaffold corrected N50 ratio be-
tween OperaMS with SOAPdenovo as contig assembly and SOAPde-
novo. 37

5.8. A bar plot showing the fraction of genome reconstructed in the longest
scaffold by Velvet, OperaMS with Velvet as the contig assembly, SOAP-
denovo and OperaMS with SOAPdenovo as the contig assembly. . . . 38

vi

LIST OF TABLES

5.1. Sensitivity and specificity in detecting erroneous edges in the assembly
graph of different Sigma approaches. 31

5.2. N50 and corrected N50 of scaffolds produced by Opera after partition-
ing the assembly graph with different Sigma approaches. 32

5.3. Sensitivity and specificity of different Sigma approaches in detecting
erroneous edges in the assembly graph for the most abundant species
in kern rei datasets. 32

5.4. Scaffold statistics for simLC dataset. 35
5.5. Scaffold statistics for simMC dataset. 35
5.6. Scaffold statistics for simHC dataset. 35
5.7. Scaffold statistics for oral biome dataset. 36
5.8. Scaffold statistics for cow rumen dataset. 39
5.9. Scaffold statistics for kern rei 35 PCB dataset. 39
5.10. Scaffold statistics for kern rei DWDNA PCB dataset. 39
5.11. Sigma’s running time and memory requirements. 41

vii

1. Introduction

Microbes were the first forms of life to develop on Earth. Microbial communities
thrive in almost all environments, playing an important role in many processes relevant
to environment, agriculture, industry, health and disease [1]. Consequently, a lot of
effort has been put into improving the understanding of microbes, their interactions
and interdependencies as well as relationships with their hosts and habitats.

For many years, it has been recognized that vast majority of microbial life cannot be
cultivated in isolation using known methods [2]. This great plate count anomaly pro-
pelled the development of culture-independent methods for studying microbial com-
munities. Metagenomics is broadly defined as culture-independent analysis of micro-
bial communities from genetic material extracted directly from the environment.

Advances in DNA sequencing technologies resulted in cheaper, faster and high-
throughput second generation sequencing which opened the way for many metage-
nomic studies. Several studies have shown that these technologies can be utilized to
characterize complex microbial communities [3] and even reconstruct near-complete
genomes [4].

The vast amount of data being generated by metagenomic sequencing projects
requires the development of efficient, robust and automated metagenomic assembly
tools, especially because the downstream analysis is largely impacted by correctness
and contiguity of the assembly [1]. This emphasizes the importance of scaffolding, or-
dering and orienting contiguous sets of overlapping reads called contigs, into larger, not
necessarily contiguous sequences called scaffolds. Throughout the years, many scaf-
folding modules and stand-alone scaffolding tools were developed for single genome
assembly [5]. However, fewer were designed specifically for metagenomic data and
additional challenges it introduces [6].

In this thesis, a Bayesian model-based hierarchical clustering approach to aid in
de novo metagenomic assembly is presented. This approach, called Sigma, utilizes
assembly information in order to decompose metagenome scaffolding problem into
independent single genome scaffolding problems. Sigma is combined with optimal

1

single genome scaffolder Opera [7] and the performance of this pipeline, called Oper-
aMS, is evaluated against state of the art single genome (Velvet [8] and SOAPdenovo
[9]) and metagenomic (Bambus2 [10] and MetaVelvet [11]) assembly tools.

The rest of this thesis is organized as follows. A brief introduction to metage-
nomics, genome sequencing and genome assembly is given in Chapter 2. Chapter 3
describes the theoretical background and gives an overview of the method. Key imple-
mentation details as well as installation and usage instructions are provided in Chapter
4. The evaluation results are presented and discussed in Chapter 5 and summarized in
Chapter 6 together with future work possibilities.

2

2. Background

2.1. Metagenomics

Bacteria, archaea, viruses, microscopic fungi and microscopic eukaryotes comprise
microbial communities. Metagenomics studies those communities from one or more
DNA samples obtained directly from their environments. Metagenome is a collection
of all the genomes present in the microbial community.

There are two complimentary approaches to metagenomics that together provide
insight into largely unknown microbial world: function-based and sequence-based
metagenomics [12]. In function-based approaches environmental DNA is cloned into
a host bacteria and then screened for specific functions in order to identify new genes
and functions they encode. On the other hand, in sequence-based approaches environ-
mental DNA is randomly sequenced and the sequences are then analyzed in order to
explore phylogenetic complexity and distribution of functions within the community.

A typical project in shotgun metagenomics includes metadata collection, DNA ex-
traction, library construction, sequencing, read preprocessing, assembly and analysis
[13]. Analysis can be performed during several stages of the project and the out-
come is highly impacted by complexity of the microbial community being studied,
i.e., species richness and species evenness. Species richness refers to the number of
different species present in the community, while species evenness refers to the relative
species abundance in the community. A species-rich community with relatively even
species abundance is considered more complex than a species-poor community with
relatively uneven species abundance.

The ultimate goal of metagenomics is to provide a descriptive and eventually pre-
dictive metabolic and taxonomic model of an ecosystem [14].

3

2.2. Genome sequencing

In metagenomic shotgun sequencing, the total DNA extracted from the environmental
sample is sheared into many small fragments which are then sequenced to obtain reads.
The choice of suitable sequencing platform, library types and amount of sequencing is
typically driven by complexity of the microbial community being analyzed as well as
research goals and budget of the study [2][13].

First metagenomic studies were mainly conducted by sequencing DNA cloned
into a bacterial host using Sanger sequencing. Besides bypassing the requirement for
cloning, second generation sequencing provided faster, cheaper and high-throughput
sequencing, enabling analysis of complex microbial communities. Initially, Roche
454 sequencing platform was preferred because of longer read length, but substan-
tial improvements in read length and throughput increased the popularity of Illumina
sequencing platform for metagenomic studies [6]. The error rate of Illumina reads
is low, between 1% and 2%, but the errors are not uniformly distributed. There are
also substantial sequencing biases caused by DNA amplification. Third generation
sequencing, such as Pacific Biosciences sequencing platform, provides significant im-
provements with an exponential increase in read length and throughput in the past few
years, uniform error distribution and very low sequencing bias. However, since the ac-
curacy of PacBio reads is only at 85%, some claim that it is not usable for metagenomic
sequencing in its current form [15].

Some sequencing technologies have the ability to generate paired-end and mate-
pair libraries, i.e., pairs of reads with known orientation and approximate distance.
Shotgun libraries are typically prepared using a few different distances between those
paired reads called insert sizes. Short-insert paired-end reads are generated by sequenc-
ing both forward and reverse strands of a DNA fragment. Long-insert mate-pair reads
represent the ends of a DNA fragment generated by sequencing a circularized DNA
fragment. Mate-pair reads with larger insert sizes have greater likelihood of spanning
gaps and repeats but they are technically more demanding to prepare [13]. Each pair
of reads puts a constraint on orientation and distance of two contigs, providing useful
information for scaffolding.

Sequencing amount is usually expressed in terms of depth of coverage or simply
coverage, i.e., the average number of times a particular base in the genome was se-
quenced. If the goal is to determine gene content and abundance within the community,
lower sequencing coverage will suffice. On the other hand, if the goal is to obtain com-
plete or near-complete genomes, substantially higher sequencing coverage is needed,

4

especially to reconstruct genomes of community members with low abundance. Biases
in DNA sample preparation, sequencing, and genomic alignment and assembly can re-
sult in regions of the genome with unusually low or high coverage [16]. For example,
low coverage is usually observed in GC-rich or GC-poor regions of the genome due to
amplification bias of second generation sequencing technologies. Mappability issues
caused by sequencing errors and repetitive regions are another source of coverage bias.
These issues are especially manifested when using short reads from second generation
sequencing technologies.

There are two important terms related to coverage. Read count is the total number
of reads starting in a particular sequence. Arrival rate is the average number of reads
starting in a particular position in the sequence, i.e., read count divided by length of
the sequence.

Before the assembly, reads are usually filtered to remove contaminant reads such
as reads from the host DNA and trimmed to remove low quality bases at the ends of
reads.

2.3. Genome assembly

There are two main approaches to genome assembly. Comparative approaches use a
genome of a closely related organism called the reference genome to guide the as-
sembly of the sequenced genome. When the sequenced genome is not similar to any
previously assembled genome, de novo approaches are used. Although polymorphisms
between the sequenced genome and the reference genome present a challenge for com-
parative assembly, it remains simpler and computationally less expensive than de novo
assembly which falls within a class of NP-hard problems [17].

Some of the first de novo approaches were greedy algorithms. Greedy algorithms
simply iteratively merge two sequences with the best overlap if merging them does
not contradict the current assembly. Some of them incorporate additional heuristics
to guide the merging. These approaches often lead to misassemblies and result in
suboptimal solutions. Modern de novo genome assemblers can broadly be divided into
two categories: overlap-layout-consensus assemblers and de Brujin graph assemblers.

Overlap-layout-consensus assemblers use an overlap graph whose vertices repre-
sent reads and edges represent detected overlaps between the suffix of the first read and
the prefix of the second read. The goal is to find a Hamiltonian path in the graph, i.e.,
a path which traverses through each vertex exactly once.

De Brujin graph assemblers decompose the reads into words of length k called

5

k-mers, where k is usually a user-specified parameter. They use a de Brujin graph
whose vertices represent k-mers and edges represent overlaps of length k� 1 between
the suffix of the first k-mer and the prefix of the second k-mer. The goal is to find an
Eulerian path in the graph, i.e., a path which traverses through each edge exactly once.

Finding a Hamiltonian path is known to be NP-hard, while polynomial time algo-
rithms exist for finding an Eulerian path. The size of the overlap graph depends on the
number of reads, while the size of the de Brujin graph depends solely on k. Therefore,
overlap-layout-consensus assemblers are more suitable for long reads which typically
require lower coverage, i.e., a smaller number of reads. Additionally, sequencing errors
can introduce new k-mers in the de Brujin graph making de Brujin graph assemblers
more suitable for short reads which typically have a lower error rate.

Short read de Brujin graph assemblers Velvet [8] and SOAPdenovo [9] were ap-
plied to metagenomic datasets in recent studies [3] [4] with satisfactory results. Pro-
vided that the strain heterogeneity is limited, they can produce good contig assemblies.
However, single genome assemblers are unaware of the nature of metagenomic datasets
and some assumptions they make can significantly lower the quality of the assembly.
Since microbial communities often contain hundreds or thousands of species and se-
quencing coverage is limited, many low abundant species will be represented with only
a few reads, if at all. Those reads are likely to be perceived as erroneous by traditional
assembly algorithms preventing any reconstruction of their genomes. Metagenomic
assembly is further complicated by repeats, including repetitive regions within single
genomes and regions conserved in multiple related genomes. Traditional assembly
algorithms usually label regions with high coverage as repeats, but in metagenomic
assembly varying relative species abundance makes the repeat detection harder, since
high abundant species can be mistaken for repeats.

Bambus2 [10], proposed in 2011, is a scaffolding module optimized for metage-
nomic datasets. It aims to distinguish repeats from genomic variation in the assembly
graph. Repeats are detected based on the measure of vertex centrality, i.e., the number
of times a vertex appears on the shortest path between any two vertices in the graph,
and local coverage statistics in connected components of the graph. After filtering out
the repeats, contigs are oriented and positioned and the assembly graph is simplified.
Finally, subgraphs representing different species are identified by iteratively searching
for variation motifs in the graph.

MetaVelvet [11], proposed in 2012, is an extension of single genome assembler
Velvet for metagenomic datasets. It aims to decompose the de Bruijn graph into sub-
graphs that represent different genomes and then build scaffolds for each individual

6

subgraph separately. To achieve that, the empirical histogram of k-mer frequencies is
approximated by a mixture of Poisson distributions and multiple peaks in the mixture
are detected. Each graph vertex is then classified into one peak or labeled as chimeric.
Subgraphs representing different species are distinguished by identifying and discon-
necting the chimeric vertices.

Recently, a metagenomic assembly approach utilizing coverage from two samples
was presented [18]. In that approach, metagenomic DNA was extracted using two
different methods, producing datasets with different relative species abundance. Each
dataset was scaffolded independently, and the reads from both datasets were mapped
back to the scaffolds assembled from the larger dataset. Initial binning of the scaffolds
was done by plotting two coverage estimates against each other and the bins were fur-
ther refined using principal component analysis of tetranucleotide frequencies. Paired-
end reads were used to associate repeats with the appropriate bins. Finally, all reads
associated with a specific genome bin were separately re-assembled using parameters
optimized for each genome, and the scaffolds were manually corrected. Unfortunately,
this approach requires a lot of manual intervention and it cannot easily be modified to
incorporate information from more than two samples.

7

3. Materials and methods

A schematic overview of the pipeline presented in this thesis can be found in Figure
3.1. Broadly speaking, the pipeline can be separated into three main steps:

– assembly graph construction

– hierarchical clustering and model selection

– scaffolding

Figure 3.1: Overview of the pipeline.

In the first step, the assembly graph is constructed using contigs and edges gener-
ated by contigging, mapping and bundling of one or more paired-end/mate-pair read
libraries. Additionally, mapping is used to estimate contig read count and arrival rate.

8

During the second step, Sigma is used to find the optimal partitioning of the assem-
bly graph based on the Bayesian information criterion (BIC). The partitioning is done
on a hierarchical clustering tree built along the assembly graph edges based on con-
tig feature vector similarity. Currently, feature vectors include contig arrival rate from
one or more samples, but they are naturally extendible to other sources of information
such as k-mer frequencies, GC content and gene content. In the final step, optimal sin-
gle genome scaffolder Opera is used to produce scaffolds for the partitioned assembly
graph.

3.1. Assembly graph construction

Contigs are contiguous sequences which represent a consensus sequence of a set of
overlapping reads. They can be assembled by an arbitrary contigger suitable for the
used sequencing technology, e.g., Velvet [8] or SOAPdenovo [9] for Illumina reads.
Both of these assemblers generate contigs from a de Brujin graph described in Section
2.3. Usually, single-end and short-insert paired-end reads are used for contigging.

After contigging, contig read count, arrival rate and coverage can be estimated by
mapping the reads used for contigging back to the assembled contigs. If the sequencing
technology provides paired-end and/or mate-pair reads, they can be mapped back to
the assembled contigs to find connections between different contigs. Mapping can be
done with an arbitrary mapper which supports the error model of the used sequencing
technology, e.g., Bowtie [19] or BWA [20] for Illumina reads.

Edges are sets of paired-end/mate-pair reads suggesting the same orientation and
similar distance between two contigs. They can then be generated from assembled
contigs and mapping by a bundler such as Opera’s [7] bundling routine. Let M =

{m
1

, ...,m
k

} be a set of paired reads suggesting the same orientation between the
same pair of contigs. Each m

i

gives an independent estimate (µ
i

, �
i

) of the mean
and standard deviation of the distance between the two contigs. Standard deviation is
usually around 10% of the library insert size. Paired reads in M can be bundled with
the following routine [21]:

1. Find the median of distances µ
med

suggested by m
med

2M .

2. Select the subset N ✓ M such that µ
i

2 [µ
med

� 3�
med

, µ
med

+ 3�
med

] for all
m

i

2 N .

3. Define p =

P
mi2N

µi

�i
2 and q =

P
mi2N

1

�i
2 .

9

4. Add (µ, �) = (

p

q

, 1p
q

) to the set of edges with the suggested orientation between
the two contigs.

5. Set M = M \N .

6. Repeat steps 1.-5. until M = ;.

Contigs and their paired-end and/or mate-pair connections can intuitively be rep-
resented with an assembly graph G = (V,E) where each vertex represents a contig
and each edge represents a bundle of paired-end and/or mate-pair reads connecting
two contigs. Each vertex can have various parameters associated with the contig it
represents such as length, read count, arrival rate, coverage, k-mer frequencies and GC
content. Each edge can be described with orientation, number of supporting reads,
and mean and standard deviation of the distance between the incident contigs. The
assembly graph is bidirectional, meaning that each edge can be traversed in two ways.

Repetitive regions, sequence similarities between different genomes and mapping
errors can introduce additional erroneous edges in the assembly graph and join dif-
ferent genomes together. The goal is to filter out those edges so that each connected
component in the graph contains contigs originating from a single genome. By dis-
connecting the erroneous edges, metagenome scaffolding problem can be reduced to
multiple independent single genome scaffolding problems and graph components can
be scaffolded independently using existing tools.

3.2. Hierarchical clustering

Clustering or cluster analysis is a method which aims to partition a set of objects in
different groups called clusters in a way that objects belonging to the same group
are more similar to each other than to objects belonging to other groups according to
some criterion. Clustering methods can be broadly divided into hierarchical clustering
and partitional clustering. Hierarchical clustering groups objects with a sequence of
partitions, while partitional clustering directly divides objects into some prespecified
number of clusters without the hierarchical structure [22].

Hierarchical clustering is an unsupervised clustering method, i.e., it tries to model
the given data without knowing anything about its true distribution. Furthermore, hier-
archical clustering does not require the number of clusters to be specified in advance.
These two properties go well with the fact that the number of species and relative
species abundance are typically unknown in metagenomic assembly.

10

There are two main hierarchical clustering strategies. Agglomerative (bottom-up)
clustering begins with placing each object into a singleton cluster, i.e., a cluster con-
taining one element, and proceeds with iteratively merging the clusters based on a
similarity measure until all objects are merged into one cluster containing all objects.
On the other hand, divisive (top-down) clustering begins with placing all objects into
one cluster and proceeds with iteratively splitting the clusters based on a splitting crite-
rion until all objects are splitted into singleton clusters. Unlike a splitting criterion for a
cluster of contigs, a similarity measure between two contigs can be intuitively defined,
making agglomerative clustering a more suitable strategy for metagenomic assembly.

The only input requirement for agglomerative hierarchical clustering is a n ⇥ n

matrix of pairwise distances between all objects, where n is the number of objects.
Each distance gives a similarity measure between two objects - the smaller the distance
the higher the similarity. The distance between two clusters of objects, X and Y , can
then be determined based on some commonly used linkage criteria:

– single-linkage d(X, Y) = min

x2X,y2Y d(x, y)

– complete-linkage d(X, Y) = max

x2X,y2Y d(x, y)

– mean or average linkage d(X, Y) =

1

|X||Y |
P

x2X
P

y2Y d(x, y)

After placing each object into a separate cluster and setting the cluster distances to
the distances of corresponding objects, clustering proceeds with the following steps:

1. Find clusters X and Y with the smallest distance d(X, Y).

2. Merge clusters X and Y into a single cluster Z.

3. Remove rows and columns corresponding to clusters X and Y in the distance
matrix.

4. Compute distances between cluster Z and the remaining clusters and insert the
corresponding row and column in the distance matrix.

5. Repeat steps 1.-4. until there is only one cluster left.

A set of clusters in each iteration of hierarchical clustering corresponds to one pos-
sible partitioning of the data. The end result of hierarchical clustering is a hierarchical
clustering tree where each node represents a cluster containing all objects contained in
its child clusters.

The basic algorithm described above is not very efficient. The initial step, com-
puting the distances between all objects, takes O(n2

) time. After each iteration the

11

number of clusters is decreased by 1, so the total number of iterations is n � 1. Iden-
tifying the smallest distance takes time proportional to n2, (n � 1)

2, (n � 2)

2, ... and
recomputing the distances between the new cluster and the remaining clusters takes
time proportional to n� 1, n� 2, n� 3... Thus, the time complexity of the algorithm
is O(n3

).
Given the assembly graph described in Section 3.1, precisely:

– a set of contigs V = (v
1

, v
2

, ..., v
n

);

– a set of contig lengths L = (l
1

, l
2

, ..., l
n

), where l
i

is the length of v
i

;

– a set of contig read counts R = (r
1

, r
2

, ..., r
n

), where r
i

is the read count of v
i

;

– a set of edges E = (e
1

, e
2

, ..., e
k

), where E ✓ V ⇥ V ,

the arrival rate of contig v
i

is defined as �
i

=

ri
li

and the similarity measure d(v
i

, v
j

)

between two contigs can be defined with Equation 3.1. A surface plot of this function
is shown with Figure 3.2. This function accounts for local arrival rate variation by
normalizing the arrival rate difference.

d(v
i

, v
j

) =

8
<

:

|�i��j |
max(�i,�j)

, if (v
i

, v
j

) 2 E

1, if (v
i

, v
j

) /2 E
(3.1)

0

2

4

6

8
10

0

2

4

6

8

10
0.0

0.2

0.4

0.6

0.8

1.0

λ1
λ2

d(v1, v2)

Figure 3.2: A surface plot of contig distance function defined with Equation 3.1.

12

Single-linkage hierarchical agglomerative clustering of the contigs based on their
arrival rates can then be done with the following steps:

1. Select the first edge in the priority queue of edges from E sorted in order of
increasing distance d(v

i

, v
j

).

2. If the contigs incident to this edge do not belong to the same cluster, merge the
clusters containing these contigs into a new cluster.

3. Replace the clusters which previously contained these contigs with the new clus-
ter.

4. Repeat steps 1.-3. until all edges are processed.

It is important to notice that the method described above typically produces not
one, but multiple hierarchical clustering trees. Prior beliefs on possible partitions of the
assembly graph are elegantly represented in the generated clustering trees. Partitions
that cluster contigs from different connected components are eliminated by relying
on bundles of paired-end/mate-pair connections. Furthermore, the distance between
two contigs in a clustering tree increases with distance in arrival rate space and fewer
internal nodes in the tree cluster distant contigs together. Finally, by considering edges
in the increasing order of the distance, potentially erroneous links are likely to be used
closer to the roots.

3.3. Model selection

Model-based clustering assumes that the observed data was generated by a mixture of
underlying probability distributions where each mixture component generated a differ-
ent cluster. The goal is to reconstruct parameters of those probability distributions to
find the best-fit model for the observed data.

3.3.1. Lander-Waterman model

According to the model proposed by Lander and Waterman in 1988. [23], the number
of reads starting at each position in a genome follows a Poisson distribution. This holds
under the assumption that the reads are distributed uniformly across the genome.

Specifically, if N reads were sampled from a genome of length G with the aver-
age number of reads starting at each position equal to � = N/G, the number of reads
starting at each position in the genome can be modeled as p ⇠ Poisson (�). Thus,

13

the total number of reads in a non-repetitive contig of length l, i.e. contig read count,
can be modeled as r =

P
l

i=1

p
i

⇠ Poisson (l�). For a repetitive contig constructed
from reads sampled from repetitive regions within a single genome, the total number of
reads will be over-represented proportionally to the number of copies of the repetitive
region. Similarly, for a repetitive contig constructed from reads sampled from repeti-
tive regions shared between multiple genomes, the total number of reads will follow a
Poisson mixture model.

When the assumption that the reads were uniformly sampled from the genome
does not hold, which is often the case due to sequencing bias and mappability issues
caused by sequencing errors and repetitive regions, the number of reads starting at each
position in a genome can instead be modeled with a negative binomial distribution,
hence allowing for a larger variance. Negative binomial distribution is used commonly
throughout biology as a model for overdispersed count data [24].

Probability mass functions of Poisson distribution and negative binomial distribu-
tion are shown with Equation 3.2 and Equation 3.3 respectively. Poission distribution
expresses the probability of a given number k of events occurring in a specific interval
if these events occur independently with a known average rate �. Both mean µ and
standard deviation � of the Poission distribution are equal to �. Negative binomial
distribution expresses the probability of k successes occurring before r failures in a
sequence of independent trials with the success probability in each trial equal to p. For
modeling the read count distribution it is more natural to parameterize the negative
binomial distribution with mean µ and variance over mean ratio VMR =

�

µ

. Since the
mean is equal to µ =

pr

1�p

and the variance is equal to � =

pr

(1�p)

2 , we can easily obtain
p = 1� 1

VMR

and r = 1�p

p

µ.

f(k;�) =
�ke��

k!
(3.2)

f(k; r, p) =

✓
k + r � 1

k

◆
(1� p)rpk (3.3)

Given:

– a set of contigs V = (v
1

, v
2

, ..., v
n

);

– a set of contig lengths L = (l
1

, l
2

, ..., l
n

), where l
i

is the length of v
i

;

– a set of contig read counts R = (r
1

, r
2

, ..., r
n

), where r
i

is the read count of v
i

;

14

to partition the assembly graph, the goal is to determine:

– the Poisson components underlying the observed read counts

– the most probable assignment of contigs to those components based on their
read counts

If M = {m
1

,m
2

, ...,m
k

} is a set of Poisson components underlying the observed
set of read counts with a set of respective mean read counts ⇤ = {�

1

,�
2

, ...,�
k

}, the
probability of observing R, under the previous assumptions is given with Equation 3.4.
The natural logarithm of this equation gives a score for each partition with k clusters
in the hierarchical clustering tree, where �

i

is the mean arrival rate of the cluster,
estimated as described in the following section.

p(R|M) =

nY

i=1

p(r
i

|M) =

nY

i=1

kX

j=1

p(r
i

|�
k

l
i

)p(v
i

2M
k

) (3.4)

3.3.2. Parameter estimation

Maximum likelihood estimation is a general method for estimating unknown parame-
ters of a probabilistic model. Given a probabilistic model p and a set of observations X,
maximum likelihood estimation produces a set of parameters ˆ✓ called maximum like-
lihood estimate (MLE) as it maximizes the likelihood of a set of parameters given the
observations over all possible sets of parameters ⇥. Maximizing the likelihood refers
to maximizing the probability of observing the data with a particular set of parameters
given the statistical model. For independent and identically distributed observations
MLE is defined with Equation 3.5.

ˆ✓ = argmax

✓2⇥
L (✓|X) = argmax

✓2⇥
p (X|✓) = argmax

✓2⇥

Y

x2X

p (x|✓) (3.5)

Since natural logarithm is a strictly monotone increasing function, it is often easier
to find MLE by maximizing the log-likelihood. For Poisson distribution, MLE for the
mean of the distribution of read counts ˆ� can easily be found analytically by maximiz-
ing log-likelihood resulting in ˆ� =

�1+�2+...+�n

n

. For negative binomial distribution,
maximum likelihood estimation does not give a solution in closed form. To avoid
complex computations, the mean read count is approximated with the mean of read
counts of all contigs in the cluster and the variance over mean ratio is approximated

15

globally for all clusters as the mean variance over mean ratio of read counts in blocks
of predefined length for all contigs. In the future, this could be replaced with better
and more sophisticated approximations.

3.3.3. Bayesian information criterion

Bayesian information criterion (BIC) was proposed in 1978. [25] as a criterion for
selecting one model from a finite set of possible models. It was derived under the as-
sumption that the distribution of the data is in the exponential family, which is true for
both Poisson and negative binomial distribution. In BIC a term is subtracted from the
log-likelihood of the model to penalize the complexity of the model, i.e. the number of
parameters of the model. This is necessary because maximum log-likelihood selection
principle would always lead to choosing the most complex model, which would in this
case result in clustering each contig separately, since the scores are computed using
this principle. BIC score of a model M with k parameters estimated for n observations
is shown with Equation 3.6. The goal is to find the model M with the highest BIC
score.

BIC = logL(M)� 1

2

k log n (3.6)

In order to efficiently compute the mixture model which maximizes the BIC de-
termined by cutting the hierarchical clustering trees in k clusters, BIC score can be
decomposed as shown with Equation 3.7. It is easy to see that for any tree the opti-
mal cut either uses the root node i with the score log p(R|�

i

) � 1

2

log n or is made of
optimal cuts of the children nodes i

1

and i
1

with the score log p(R|�
i1) � 1

2

log n +

log p(R|�
i2)� 1

2

log n and the solution can be found recursively.

ln p(R|⇤)� 1

2

k log n =

kX

i=1

✓
log p(R|�

i

)� 1

2

log n

◆
(3.7)

For the Poisson distribution, the contig-based scoring approach described above
is used. However, for negative binomial approach, window-based scoring approach is
used. This approach can be viewed as considering each contig as a cluster of contig
windows. Only a few minor changes need to be made: all contigs are splitted into
windows of the same predefined length, instead of scoring the contig read count, read
counts in each window are scored and n is changed from the number of contigs to the
number of windows.

16

3.4. Scaffolding

Scaffolding, ordering and orienting contigs, typically using paired-end/mate-pair li-
braries, to obtain larger, non-contiguous sequences is an important step in obtaining
a better reconstruction of the genome. Given the assembly graph described in section
3.1, there are two possible orientations, v

i

and �v
i

, for each contig v
i

2 V . A scaffold
is then given by a signed permutation of the contigs and the gap sizes between the
adjacent contigs which can be estimated from edges in E. Exhaustive search over all
2

|V ||V |! possible solutions is clearly not feasible.
Opera was proposed in 2011 [7] as an exact solution for the scaffolding problem.

Unlike previously proposed approaches whose algorithms rely mostly on heuristics,
Opera’s algorithm is guaranteed to find an optimal solution with the optimality crite-
rion being the maximization of number of concordant edges in the assembly graph. An
edge is concordant if the suggested orientation of the paired reads is satisfied and the
distance between the paired reads is less than the maximum library size, otherwise the
edge is discordant. The main advantages of this approach are that it utilizes as many
edges as possible and at the same time avoids overly aggressive scaffolding that could
produce longer but erroneous scaffolds. Opera’s algorithm can robustly handle errors
caused by assembly and mapping errors, and chimeric mate-pair reads.

Given a set of contigs and a mapping of paired reads to contigs, edge bundling
is used to generate the assembly graph, as described in section 3.1. Usually, edges
supported with less than a prespecified number of paired reads, e.g., 5, are removed
from the assembly graph. Repetitive contigs, with the coverage above a prespecified
threshold, are also usually removed from the assembly graph.

Partial scaffold S 0 is defined as a scaffold on a subset of contigs. Dangling set
D(S 0

) is defined as a set of edges from S 0 to V �S 0. Active region A(S 0
) is defined as

the shortest suffix of S 0 such that all dangling edges are adjacent to a contig in A(S 0
).

X(S 0
) is defined as a set of discordant edges in S 0. Authors show that by considering

two partial scaffolds S 0
1

and S 0
2

with less than p discordant edges the following property
holds: if (A(S 0

1

), X(S 0
1

)) = (A(S 0
2

), X(S 0
2

)) then S 0
1

and S 0
2

contain the same set of
contigs and both or neither of them can be extended to a solution.

They propose a dynamic programming algorithm which searches through all pos-
sible (A,X) pairs. Given a minimum contig length l

min

and an upper-bound on the
paired-end/mate-pair library insert size ⌧ , the upper bound on the number of contigs
that can be spanned by an edge is given with w =

⌧

lmin
. If the maximum allowed

number of discordant edges is p, Opera’s algorithm runs in O(|V |w|E|p+1

) time.

17

After ordering and orienting contigs, gap sizes are computed from the constraints
imposed by paired reads using a maximum likelihood approach.

18

4. Implementation

Sigma was developed in C++ for time and memory efficiency. It was tested on Linux
and Mac OS X operating systems. The implementation is commented in the code
itself and the documentation is available in HTML format created using Doxygen, but
a brief overview of some important classes and functions as well as installation and
usage instructions are given in this chapter.

4.1. Overview

Module sigma

This is the main module. It contains class Sigma which is used for reading the con-
figuration file described in Section 4.3.1 and storing the method parameters. After
configuring the method parameters it runs the method as described with Algorithm 1.
Module contig_reader

This module contains interface ContigReader and two implementations of that in-
terface VelvetReader and SOAPdenovoReader that can be used to read the con-
tig files generated by Velvet and SOAPdenovo assemblers respectively.
Module mapping_reader

This module contains interface MappingReader and one implementation of that
interface SAMReader that can be used to read the mapping files in SAM file format.
Module edge_reader

This module contains interface EdgeReader and one implementation of that inter-
face OperaBundleReader that can be used to read files with bundled edges gener-
ated by Opera’s bundling routine.

19

Algorithm 1 Sigma
if contigs_file_type = - then

read_contigs(sigma_contigs_file, contig_map)
else

contig_reader.read(contigs_file, contig_map)
for i:=1 to num_samples do

mapping_reader.read(mapping_files[i], i, contig_map)
save_contigs(contig_map, sigma_contigs_file)

for i:=1 to num_edges_files do
edge_reader.read(edges_files[i], contig_map, edge_set, skipped_edges_files[i])

edge_queue construct_priority_queue(edge_set)
cluster_graph(contig_map, edge_queue)
cluster_graph.compute_scores(probability_distribution)
cluster_graph.compute_models()
cluster_graph.save_clusters()
for i:=1 to num_edges_files do

edge_reader.filter(edges_files[i], contig_map, filtered_edges_files[i])

Module probability_distribution

This module contains interface ProbabilityDistribution and two implemen-
tations of that interface PoissonDistribution implementing Poisson distribu-
tion and NegativeBinomialDistribution implementing negative binomial
distribution. Methods computing log of the probability mass function compute it effi-
ciently using Stirling’s series approximation for log(x!)
Module contig

This module contains classes Contig and ContigIO. Objects of class Contig
store contig information such as contig id, contig length, starting position of the first
window, ending position of the last window, number of windows, number of reads in
each window and current cluster containing the contig. Class ContigIO provides
methods for reading and saving contigs in Sigma intermediate contig format, so the
method can be rerun without the need to read the original contig and mapping files
again.
Module edge

This module contains classes Edge, EdgeHash and EdgeComparator. Objects of
class Edge store bundled edges including pointer to contigs incident to the edge and
their distance. Distance is computed with Algorithm 2 as the average of normalized

20

distances in all samples for which at least one contig has arrival rate larger than 0.
Class EdgeHash computes the hash value for the edge. The hash value is computed
with inbuilt std::hash function for std::string objects created by a concatenation of ids
of contigs incident to this edge separated by space. This class is used when reading
edge files to ensure that the connection between the same pair of contigs is stored
only once. Class EdgeComparator compares two edges based on the distance of
the contigs connected by those edges. This class is used for constructing the priority
queue of edges where edge with a smaller distance has a higher priority.

Algorithm 2 compute_distance(contig1, contig2)
sum_dists := 0
num_non_zero_samples := num_samples
for i:=1 to num_samples do

arr_rate1 = contig1.arrival_rates[i]
arr_rate2 = contig2.arrival_rates[i]
if arr_rate1 < 10

�6 and arr_rate2 < 10

�6 then
num_non_zero_samples -= 1

else
sum_dists += abs(arr_rate1-arr_rate2) / max(arr_rate1, arr_rate2)

return sum_dists / num_non_zero_samples

Module cluster

This module contains class Cluster. Objects of class Cluster store a pointer to
an array of contigs belonging to the cluster, number of contigs, length, read counts and
arrival rates for all samples, pointers to left and right child, score and model score.
Module cluster_graph

This module contains class ClusterGraph with implementations of the key meth-
ods for constructing hierarchical clustering trees with Algorithm 3 and recursively
computing model for each cluster with Algorithm 4 starting from the leaves of hi-
erarchical clustering trees.

21

Algorithm 3 cluster_graph(contig_map, edge_queue)
for contig in contig_map do

roots.insert(new Cluster(contig))
for edge in edge_queue do

cluster1 = edge.contig1().cluster()
cluster2 = edge.contig2().cluster()
if cluster1 != cluster2 then

roots.insert(new Cluster(cluster1, cluster2))
roots.erase(cluster1)
roots.erase(cluster2)

Algorithm 4 cluster_graph.compute_cluster_model(cluster)
if cluster.num_contigs() = 1 then

cluster.set_model_score(cluster.score())
cluster.set_connected(true)

else
c_score = cluster.score()
disc_score = cluster.child1().model_score() + cluster.child2().model_score()
if c_score >= disc_score then

cluster.set_model_score(c_score)
cluster.set_connected(true)

else
cluster.set_model_score(disc_score)
cluster.set_connected(false)

4.2. Installation

Installing Sigma requires a C++ compiler supporting C++0x/C++11 standard and GNU
make utility. To install Sigma go to the source directory and simply type:

make

After installation, a binary executable file sigma will be created in the source direc-
tory. To remove the binary files go to the source directory and type:

make clean

22

4.3. Usage

4.3.1. Configuration file

This is an example of a configuration file:

contigs_file_type = SOAPdenovo

contigs_file = /dataset/contig.fa

mapping_files = /dataset/mapping.sam

edges_files = /dataset/300.dat,/dataset/10k.dat

output_dir = /dataset/SIGMA/

contig_len_thr = 500 # default: 500

contig_edge_len = 80 # default: 0

contig_window_len = 340 # default: 0

pdist_type = NegativeBinomial

The configuration file follows the format of Opera’s [7] configuration file. Each line
contains parameter name and parameter value separated with =. Everything following
a # is considered a comment.

Sigma takes the following parameters as the input:

– contigs_file_type - name of the assembler used for contigging (either
Velvet or SOAPdenovo)

– contigs_file - path to file with assembled contigs

– mapping_files - comma separated paths to mapping files in SAM format,
or - for reading from standard input

– edges_files - comma separated paths to files with bundled edges

– sigma_contigs_file - path to intermediate file with contigs; used for
input when contigs_file_type is not specified, otherwise used for output

– contig_len_thr - contig length threshold; contigs shorter than this thresh-
old will not be clustered by the method; default: 500

– contig_edge_len - length of the contig edge which is disregarded when
computing read counts and arrival rates; default: 0

23

– contig_window_len - length of the window used for scoring the clusters;
if set to 0 the entire contig is used for scoring; default: 0

– pdist_type - probability distribution (either Poisson or NegativeBinomial);
default: Poisson

– vmr - variance to mean ratio for negative binomial distribution; default: mean
vmr estimated from all contigs longer than 10k bp

4.3.2. Running

After successful installation and creation of a configuration file sigma.config, you
can run Sigma from the directory with the binary executable file by typing:
./sigma sigma.config

4.3.3. Output files

After running Sigma, the output directory will contain the following files:

– clusters - a simple text file containing one line for each contig with the
following format: contig id, cluster id, contig read count, cluster arrival rate

– skipped_bundle.dat - a text file containing skipped edges for which one
or both incident contigs were not found

– filtered_bundle.dat - a text file containing filtered edges connecting
contigs belonging to the same cluster

Files prefixed with skipped_ and filtered_ will be created separately for each
file with bundled edges.

24

5. Results

5.1. Datasets

5.1.1. Simulated datasets

In order to objectively evaluate the correctness of our method, we used four simulated
datasets for which the correct solution can be computed.

Three of these datasets, simLC, simMC and simHC, were constructed based on the
datasets for standardized benchmarking of methods for processing metagenomic se-
quences [26]. Each dataset contains the same set of 113 species with varying relative
abundance reflecting real metagenomic datasets in terms of complexity and phyloge-
netic composition:

– simLC - low-complexity community with single dominant species

– simMC - medium-complexity community with multiple dominant species

– simHC - high-complexity community without dominant species

The fourth dataset, oral biome, mimics 41 most abundant species in the human
salivary microbiome and it was constructed based on the data from a recent study [27].
Figure 5.1 illustrates the distribution of relative species abundance in all simulated
datasets.

25

simLC simMC simHC oral biome

0
0.

05
0.

1
0.

15
0.

2
0.

25

● ●
● ●

Distribution of relative species abundance

Dataset

R
el

at
ive

 s
pe

ci
es

 a
bu

nd
an

ce

113 species
41 species

Figure 5.1: Violin plots showing the distribution of relative species abundance in simLC,

simMC, simHC and oral biome datasets.

MetaSim [28] was used to generate three paired-end and mate-pair libraries for the
simulated datasets:

– 2⇥ 80 bp, insert size 300 bp, 50⇥ coverage, Illumina 80 bp error model

– 2⇥ 50 bp, insert size 2000 bp, 2⇥ coverage, Illumina 50 bp error model

– 2⇥ 50 bp, insert size 10000 bp, 2⇥ coverage, Illumina 50 bp error model

5.1.2. Real datasets

Since the simulated datasets do not account for various sequencing biases, we also
used three real datasets to evaluate our method.

The first dataset, cow rumen, contains metagenomic DNA sequenced from mi-
crobes adherent to plant fiber incubated in cow rumen [4]. The following paired-end
and mate-pair libraries were downloaded from NCBI Sequence Read Archive under
accession number SRA023560:

– 2⇥ 125 bp, insert size 200 bp, 17.3 Gb, Illumina sequencing

26

– 2⇥ 101 bp, insert size 300 bp, 191.3 Gb, Illumina sequencing

– 2⇥ 75 bp, insert size 3000 bp, 31.7 Gb, Illumina sequencing

– 2⇥ 75 bp, insert size 5000 bp, 26.8 Gb, Illumina sequencing

The second two datasets, kern rei 35 PCB and kern rei DWDNA PCB, contain
metagenomic DNA sequenced from two enrichment cultures that could possibly be
used to degrade toxic environmental pollutants PCBs. These datasets contain only one
paired-end library:

– 2⇥ 76 bp, insert size 300 bp, Illumina sequencing

5.2. Contigging, read mapping and edge bundling

All four simulated datasets were assembled using Velvet [8] and SOAPdenovo [9].
Reads were mapped back to the assembled contigs using Bowtie [19] and the mapping
was used to generate edges with Opera’s [7] bundling routine.

Assembled contigs were aligned back to the reference genomes using MUMmer
[29]. Based on all alignments of length� 400 bp and identity� 95%, each contig was
labeled as one of the following types:

– unique - all regions were aligned to the same genome and the number of indels
between the alignments was < 5% of total alignment length

– repeat - the sum of non-overlapping regions of the alignments was > 150% of
contig length

– misassembly - regions were uniquely aligned to different genomes

Figure 5.2 shows the distribution of contig lengths and Figure 5.3 shows the number
of unique, repeat and misassembly contigs for both contig assemblies. We can see that
Velvet manages to assemble larger contigs, resulting in a smaller number of contigs
than SOAPdenovo, but a lot more contigs assembled by Velvet are labeled as misas-
emblies.

27

simLC simMC simHC oral biome

0
20

0
40

0
60

0
80

0

● ● ● ●

Distribution of Velvet
contig lengths

Dataset

C
on

tig
 le

ng
th

 [k
bp

]

simLC simMC simHC oral biome

0
20

0
40

0
60

0
80

0

● ● ● ●

Distribution of SOAPdenovo
contig lengths

Dataset

C
on

tig
 le

ng
th

 [k
bp

]
Figure 5.2: Violin plots showing the distribution of contig lengths for Velvet and SOAPdenovo

assembly.

oral
biome

simHC

simMC

simLC

Distribution of Velvet
contig labels

Number of contigs

D
at

as
et

0 20000 40000 60000 80000 100000 120000

unique
repeat
misassembly

oral
biome

simHC

simMC

simLC

Distribution of SOAPdenovo
contig labels

Number of contigs

D
at

as
et

0 20000 40000 60000 80000 100000 120000

unique
repeat
misassembly

Figure 5.3: Bar plots showing the number of contigs labeled as unique, repeat and misassembly

for Velvet and SOAPdenovo assembly.

28

5.3. Assembly graph partitioning and scaffolding

The main goal of Sigma is to correctly partition the assembly graph. Therefore, we
evaluated its sensitivity and specificity in detecting erroneous edges in the assembly
graph.

Based on the type of incident contigs, each edge was labeled as one of the following
types:

– erroneous - connects unique contigs aligned to different genomes or unique

contig with repeat contig

– non-erroneous - connects unique contigs aligned to the same genome

Based on the output of Sigma, each edge was classified as one of the following
types:

– erroneous - connects contigs belonging to different clusters

– non-erroneous - connects contigs belonging to the same cluster

To measure the performance of Sigma, usual measures used in binary classification
were defined as:

– true positive (TP) - number of edges labeled as erroneous and classified as
erroneous

– true negative (TN) - number of edges labeled as non-erroneous and classified
as non-erroneous

– false positive (FP) - number of edges labeled as non-erroneous and classified
as erroneous

– false negative (FN) - number of edges labeled as erroneous and classified as
non-erroneous

Sensitivity and specificity were defined as:

– sensitivity =

TP

TP+FN

- a fraction of erroneous edges removed by the approach

– specificity =

TN

TN+FP

- a fraction of non-erroneous edges preserved by the ap-
proach

Besides correctness, we evaluated contiguity of scaffold assembly produced by
Opera after partitioning the assembly graph with Sigma using the following mea-
sures:

– N50 - the length of the smallest scaffold such that at least 50% of the total
scaffold length is contained in scaffolds of that size or longer

29

– corrected N50 (cN50) - computed in the same way as N50, but after breaking
scaffolds at all misjoins between two contigs

Contig assemblies were labeled with assembler name and insert sizes of used
paired-end/mate-pair libraries. Contig-based approach using Poisson distribution was
labeled with SigmaP and window-based approach using negative binomial distribution
was labeled with SigmaNBW. These two approaches were compared in terms of sen-
sitivity and specificity shown in Table 5.1 as well as N50 and corrected N50 shown in
Table 5.2.

We can see that both approaches achieve similar sensitivity and specificity. SigmaP
consistently has a bit higher sensitivity, while SigmaNBW consistently has a bit higher
specificity. This is expected, since the negative binomial distribution allows for a more
flexible model than the Poisson distribution. Another interesting observation can be
made when comparing the results on Velvet and SOAPdenovo contig assemblies. We
can see that both approaches achieve much better results on SOAPdenovo contig as-
semblies. This can be explained by the fact that Velvet seems to output longer, but more
erroneous contigs, as shown in Section 5.2. Specificity seems to be more influenced
by the quality of assembled contigs than sensitivity. For some datasets specificity is
almost 40% lower for Velvet contig assembly. The only dataset for which this be-
haviour is not apparent is the least complex one, oral biome, for which the achieved
sensitivity and specificity are similar for both contig assemblies. We can conclude that
a good contig assembly will typically result in a much better scaffold assembly. Opera
achieves similar scaffold N50 and corrected N50 after partitioning the assembly graph
with both approaches.

The read count distribution seems to slightly deviate from the Poisson distribution
due to mappability issues even in simulated datasets. In real datasets, it is expected that
the distribution of read counts will deviate even more from the Poisson distribution due
to sequencing biases. Table 5.3 shows sensitivity and specificity in detecting erroneous
edges incident to at least one contig originating from the previously assembled genome
of the most abundant species in kern rei datasets. We can observe a more significant de-
crease in specificity when using SigmaP approach compared to SigmaNBW approach.
Since Opera can deal with a fraction of incorrect edges, we chose SigmaNBW as the
default approach as it achieves higher specificity.

30

Table 5.1: Sensitivity and specificity in detecting erroneous edges in the assembly graph of

different Sigma approaches.

Dataset Assembly
SigmaP SigmaNBW

Sensitivity Specificity Sensitivity Specificity

simLC

Velvet 300 0.813 0.826 0.758 0.880

Velvet 10k 0.986 0.728 0.982 0.775
Velvet 300 10k 0.924 0.668 0.912 0.695
SOAPdenovo 300 0.960 0.988 0.934 0.998

SOAPdenovo 10k 0.999 0.993 0.998 0.997

SOAPdenovo 300 10k 0.984 0.989 0.977 0.992

simMC

Velvet 300 0.795 0.883 0.733 0.932

Velvet 10k 0.983 0.815 0.980 0.851

Velvet 300 10k 0.906 0.765 0.891 0.793
SOAPdenovo 300 0.957 0.991 0.914 0.998

SOAPdenovo 10k 0.992 0.994 0.987 0.996

SOAPdenovo 300 10k 0.976 0.986 0.965 0.988

simHC

Velvet 300 0.803 0.742 0.823 0.888

Velvet 10k 0.980 0.657 0.975 0.710
Velvet 300 10k 0.910 0.568 0.891 0.583
SOAPdenovo 300 0.914 0.986 0.901 0.997

SOAPdenovo 10k 0.999 0.992 0.998 0.998

SOAPdenovo 300 10k 0.974 0.945 0.966 0.975

oral biome

Velvet 300 0.968 0.943 0.938 0.973

Velvet 10k 0.985 0.963 0.984 0.962

Velvet 300 10k 0.981 0.917 0.978 0.940

SOAPdenovo 300 0.983 0.985 0.971 0.997

SOAPdenovo 10k 0.988 0.994 0.982 0.999

SOAPdenovo 300 10k 0.988 0.986 0.983 0.992

31

Table 5.2: N50 and corrected N50 of scaffolds produced by Opera after partitioning the as-

sembly graph with different Sigma approaches.

Dataset Assembly
SigmaP SigmaNBW

N50 [kbp] cN50 [kbp] N50 [kbp] cN50 [kbp]

simLC

Velvet 300 22 22 23 23

Velvet 10k 152 126 145 120

Velvet 300 10k 122 103 100 90

SOAPdenovo 300 28 28 28 28

SOAPdenovo 10k 1081 248 1084 248

SOAPdenovo 300 10k 1729 1472 1746 1523

simMC

Velvet 300 24 24 25 25

Velvet 10k 167 145 159 137

Velvet 300 10k 152 134 140 127

SOAPdenovo 300 21 21 22 22

SOAPdenovo 10k 408 111 404 112

SOAPdenovo 300 10k 1198 997 1125 939

simHC

Velvet 300 27 27 29 28

Velvet 10k 147 144 168 160

Velvet 300 10k 115 111 102 97

SOAPdenovo 300 29 29 29 29

SOAPdenovo 10k 1490 302 1492 296

SOAPdenovo 300 10k 1754 1234 1859 1357

oral biome

Velvet 300 19 19 20 19

Velvet 10k 152 95 173 107

Velvet 300 10k 336 244 453 294

SOAPdenovo 300 21 21 21 21

SOAPdenovo 10k 323 131 324 131

SOAPdenovo 300 10k 1118 639 1121 650

Table 5.3: Sensitivity and specificity of different Sigma approaches in detecting erroneous

edges in the assembly graph for the most abundant species in kern rei datasets.

Dataset
SigmaP SigmaNBW

Sensitivity Specificity Sensitivity Specificity

kern rei 35 PCB 1.000 0.816 1.000 0.994

kern rei DWDNA PCB 0.997 0.785 0.993 0.973

32

Figure 5.4 shows sensitivity and specificity in detecting erroneous edges in the
assembly graph achieved by Sigma and Bambus2 with Velvet as the contig assembly.
We can see that Sigma achieves slightly higher specificity and substantially higher
sensitivity than Bambus2.

simLC simMC simHC

Sensitivity in detecting
erroneous edges

Dataset

Se
ns
iti
vi
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigma
Bambus2

simLC simMC simHC

Specificity in detecting
erroneous edges

Dataset

Sp
ec
ifi
ci
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigma
Bambus2

Figure 5.4: Comparison between sensitivity and specificity in detecting erroneous edges in the

assembly graph achieved by Sigma and Bambus2 with Velvet as the contig assembly.

Figure 5.5 illustrates the importance of combining paired-end/mate-pair libraries
with different insert sizes and their influence on correctness and contiguity of the final
scaffolds. Using only a 300 bp or only a 2k bp insert size produces correct, but short
scaffolds. Using only a 10k bp insert size produces much longer, but very erroneous
scaffolds, since small contigs can be rearranged within a 10k bp constraint in many
ways. Using a combination of 300 bp and 10k bp insert sizes utilizes the advantage of
combining short-insert library with long-insert library the most. Adding a 2k bp insert
size does not significantly improve the final scaffolds.

33

300 2k 10k 300 2k 300 10k 300 2k 10k

simLC

Libraries

N
50

/c
N

50
 [k

bp
]

0
50

0
10

00
15

00
20

00
N50 [kbp]
cN50 [kbp]

300 2k 10k 300 2k 300 10k 300 2k 10k

simMC

Libraries

N
50

/c
N

50
 [k

bp
]

0
50

0
10

00
15

00
20

00

N50 [kbp]
cN50 [kbp]

300 2k 10k 300 2k 300 10k 300 2k 10k

simHC

Libraries

N
50

/c
N

50
 [k

bp
]

0
50

0
10

00
15

00
20

00

N50 [kbp]
cN50 [kbp]

300 2k 10k 300 2k 300 10k 300 2k 10k

oral biome

Libraries

N
50

/c
N

50
 [k

bp
]

0
50

0
10

00
15

00
20

00

N50 [kbp]
cN50 [kbp]

Figure 5.5: N50 and corrected N50 of the final scaffolds produced by OperaMS using different

paired-end/mate-pair libraries and their combinations.

Tables 5.4 to 5.7 show scaffold statistics for the simulated datasets for OperaMS
with Velvet as the contig assembly (VO), OperaMS with SOAPdenovo as the con-
tig assembly (SO), Velvet (V), SOAPdenovo (S), Bambus2 with Velvet as the contig
assembly (B) and MetaVelvet (MV). Besides N50 and corrected N50, we evaluated
the error rate as the fraction of incorrect edges present in the scaffolds as well as the
number of misjoins between species belonging to different genus, between species be-
longing to same genus and between different chromosomes of the same species and
number of inverse relocations, i.e., incorrect orientations between two contigs.

OperaMS significantly outperforms all other methods in terms of N50 and cor-
rected N50. OperaMS makes less misassemblies than Velvet and has a lower error
rate on the same contig assembly. OperaMS makes similar or sometimes a bit higher
number of misassemblies than SOAPdenovo and has a bit higher error rate on the same
contig assembly, but the contiguity achieved by OperaMS is much higher. Overall, er-
ror rate is lower than 5% and the number of misjoins is quite low for all datasets when

34

they are scaffolded with OperaMS. It is interesting to see that Bambus2 and MetaVelvet
perform worse than single genome assemblers on these datasets. MetaVelvet did not
produce scaffolds for any of the datasets and Bambus2 crashed on oral biome dataset.

Table 5.4: Scaffold statistics for simLC dataset.

Method
N50 cN50 error Misjoins Misjoins Misjoins inv.

[kbp] [kbp] rate diff. genus same genus diff. chr. reloc.

VO 300 10k 100 90 0.047 72 214 38 748

SO 300 10k 1746 1523 0.021 1 12 2 1372

V 300 10k 345 82 0.119 456 1215 90 3732

S 300 10k 582 414 0.015 2 10 0 711

B 300 10k 21 19 0.275 481 2178 131 240

MV 300 10k 2.65 2.65 NA NA NA NA NA

Table 5.5: Scaffold statistics for simMC dataset.

Method
N50 cN50 error Misjoins Misjoins Misjoins inv.

[kbp] [kbp] rate diff. genus same genus diff. chr. reloc.

VO 300 10k 140 127 0.055 55 293 22 1138

SO 300 10k 1125 939 0.022 1 12 6 1933

V 300 10k 363 88 0.106 283 1465 74 2917

S 300 10k 266 217 0.010 2 3 5 566

B 300 10k 16 15 0.205 404 346 33 120

MV 300 10k 2.89 2.89 NA NA NA NA NA

Table 5.6: Scaffold statistics for simHC dataset.

Method
N50 cN50 error Misjoins Misjoins Misjoins inv.

[kbp] [kbp] rate diff. genus same genus diff. chr. reloc.

VO 300 10k 102 97 0.029 23 144 30 126

SO 300 10k 1859 1357 0.038 4 24 1 2543

V 300 10k 376 84 0.137 359 890 62 5329

S 300 10k 629 431 0.014 0 5 0 660

B 300 10k 28 26 0.398 204 1835 72 142

MV 300 10k 1.86 1.86 NA NA NA NA NA

35

Table 5.7: Scaffold statistics for oral biome dataset.

Method
N50 cN50 error Misjoins Misjoins Misjoins inv.

[kbp] [kbp] rate diff. genus same genus diff. chr. reloc.

VO 300 10k 453 294 0.034 5 1 3 450

SO 300 10k 1121 650 0.042 0 0 0 953

V 300 10k 11 10.91 0.127 125 0 2 456

S 300 10k 30 30 0.013 0 9 0 101

B 300 10k 7.89 7.89 NA NA NA NA NA

MV 300 10k 0.97 0.97 NA NA NA NA NA

Figure 5.6 illustrates the distribution of genome contig and scaffold N50 for Op-
eraMS with SOAPdenovo as the contig assembly for the simulated datasets. We can
see that the final scaffolds have much higher contiguity than the starting contigs, on
average increased by a factor of 100.

simLC simMC simHC oral biome

0
20

40
60

80
10

0

●

●

●

●

Distribution of OperaMS(SOAPdenovo)
genome contig N50 [kbp]

Dataset

G
en

om
e

co
nt

ig
 N

50
 [k

bp
]

simLC simMC simHC oral biome

0
10

00
20

00
30

00
40

00
50

00
60

00

●

●

●

●

Distribution of OperaMS(SOAPdenovo)
genome scaffold N50 [kbp]

Dataset

G
en

om
e

sc
af

fo
ld

 N
50

 [k
bp

]

Figure 5.6: Violin plots showing the distribution of genome contig and scaffold N50 for Op-

eraMS with SOAPdenovo as the contig assembly.

Figure 5.7 shows the comparison of OperaMS and SOAPdenovo genome scaffold
corrected N50 on the same contig assembly. We can see that OperaMS produces a
higher or similar scaffold corrected N50 for majority of the genomes and a lower scaf-
fold corrected N50 for only a few genomes.

36

simLC

log2[gcN50(OperaMS(SOAPdenovo)/SOAPdenovo)]

Fr
eq
ue
nc
y

−10 −5 0 5 10

0
10

20
30

40

simMC

log2[gcN50(OperaMS(SOAPdenovo)/SOAPdenovo)]

Fr
eq
ue
nc
y

−10 −5 0 5 10

0
10

20
30

40

simHC

log2[gcN50(OperaMS(SOAPdenovo)/SOAPdenovo)]

Fr
eq
ue
nc
y

−10 −5 0 5 10

0
10

20
30

40
50

oral biome

log2[gcN50(OperaMS(SOAPdenovo)/SOAPdenovo)]

Fr
eq
ue
nc
y

−10 −5 0 5 10

0
5

10
15

Figure 5.7: Bar plots showing the log of genome scaffold corrected N50 ratio between Oper-

aMS with SOAPdenovo as contig assembly and SOAPdenovo.

Figure 5.8 shows the comparison of the fraction of genome reconstructed in the
longest scaffold for Velvet and SOAPdenovo scaffold assembly and OperaMS scaffold
assembly on the same sets of contigs. OperaMS manages to reconstruct a significantly
higher number of near-complete genomes than Velvet and SOAPdenovo. OperaMS
with SOAPdenovo as the contig assembly almost completely reconstructs 20�40% of
all genomes.

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

simLC

Fraction of genome reconstructed in the longest scaffold

Fr
eq

ue
nc

y

0
10

20
30

40
Velvet
OperaMS(Velvet)
SOAPdenovo
OperaMS(SOAPdenovo)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

simMC

Fraction of genome reconstructed in the longest scaffold

Fr
eq

ue
nc

y

0
10

20
30

40

Velvet
OperaMS(Velvet)
SOAPdenovo
OperaMS(SOAPdenovo)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

simHC

Fraction of genome reconstructed in the longest scaffold

Fr
eq

ue
nc

y

0
10

20
30

40

Velvet
OperaMS(Velvet)
SOAPdenovo
OperaMS(SOAPdenovo)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

oral biome

Fraction of genome reconstructed in the longest scaffold

Fr
eq

ue
nc

y

0
5

10
15

20

Velvet
OperaMS(Velvet)
SOAPdenovo
OperaMS(SOAPdenovo)

Figure 5.8: A bar plot showing the fraction of genome reconstructed in the longest scaffold

by Velvet, OperaMS with Velvet as the contig assembly, SOAPdenovo and OperaMS with

SOAPdenovo as the contig assembly.

Table 5.8 shows the number of scaffolds and scaffold N50 for cow rumen dataset.
OperaMS outperforms SOAPdenovo with more than two times higher N50. OperaMS
also outperforms Velvet with a bit higher N50, but Velvet manages to assemble more
long scaffolds. However, as shown on the simulated datasets, Velvet tends to assemble
large scaffolds at the expense of more errors.

38

Table 5.8: Scaffold statistics for cow rumen dataset.

Statistic Method
Scaffolds Scaffolds Scaffolds Scaffolds Scaffolds

� 1kbp � 50kbp � 100kbp � 500kbp � 1Mbp

Number OperaMS 96450 5507 1995 61 5

of SOAPdenovo 283580 4190 1166 35 4

scaffolds Velvet [4] 179092 7126 2441 65 8

N50 [bp]

OperaMS 39030 123149 198460 613122 1070968

SOAPdenovo 14673 105724 195228 673006 1204035

Velvet [4] 34338 117023 187333 667799 1085061

Tables 5.9 and 5.10 show the number of scaffolds and scaffold N50 for kern rei

datasets. SOAPdenovo outperforms OperaMS on these datasets. This can be explained
by the fact that these datasets only have a library with a 300 bp insert size and 85�90%
of the contigs are shorter than 500 bp. Unlike OperaMS which has a threshold on the
contig length and does not scaffold contigs shorter than 500 bp, SOAPdenovo manages
to scaffold those small contigs and achieve higher N50.

Table 5.9: Scaffold statistics for kern rei 35 PCB dataset.

Statistic Method
Scaffolds Scaffolds Scaffolds Scaffolds Scaffolds

� 500bp � 1kbp � 2kbp � 50kbp � 100kbp

Number of OperaMS 3191 1812 1144 6 3

scaffolds SOAPdenovo 4741 2361 998 15 3

N50 [bp]
OperaMS 5600 6403 7419 101704 118731

SOAPdenovo 9550 13520 18891 83544 153266

Table 5.10: Scaffold statistics for kern rei DWDNA PCB dataset.

Statistic Method
Scaffolds Scaffolds Scaffolds Scaffolds Scaffolds

� 500bp � 1kbp � 2kbp � 50kbp � 100kbp

Number of OperaMS 4873 2996 1922 13 2

scaffolds SOAPdenovo 8685 3393 1418 53 19

N50 [bp]
OperaMS 7253 8255 9432 62752 109809

SOAPdenovo 10311 17429 24441 105793 150262

39

5.4. Running time and memory requirements

Testing was performed on the following configuration:

– CentOS Linux 6.1

– Seagate R� Enterprise Capacity 2.5 HDD

– Intel R� Xeon R� CPU X7550 @ 2.00GHz

– 512GB of RAM

Running time was measured with GNU time:
time ./sigma sigma.config

Memory requirements were measured with Valgrind [30]:
valgrind --tool=massif ./sigma sigma.config

Reading a mapping file can take from several minutes up to a few hours depending
on the file size. For example, reading a 32 GB .bam file for cow rumen dataset takes
36.8 minutes.

The initial contig-based approach has lower memory requirements and significantly
lower running time than the window-based approach, since it stores only the total read
count for each contig and the time required for scoring does not depend on contig
lengths. Peak memory usage and total user time for the window-based approach are
shown in Table 5.11. Sigma has low memory requirements ranging from only a couple
of MB up to 350 MB. The memory requirements are proportional to the total number
of windows in all contigs. Running time is below 2 minutes for smaller datasets, but
for larger datasets it can get up to 1.5 hours with scoring of the clusters consuming
more than 90% of the time.

The scoring of the clusters is mutually independent and could be parallelized rela-
tively easy, but since the focus of this thesis was mainly on the method itself and the
running time is still reasonably low, this was left for future work.

Opera’s running time is below 25 minutes for all datasets.

40

Table 5.11: Sigma’s running time and memory requirements.

Dataset
Number of Number of Running Memory

contigs edges time [s] requirements [MB]

simLC 85248 138003 41.422 40.666

simMC 110698 186531 49.447 48.176

simHC 85502 155683 84.529 40.740

oral biome 28436 70651 12.982 14.644

kern rei 35 PCB 4920 3246 0.159 1.760

kern rei DWDNA PCB 9212 5810 0.354 3.323

cow rumen 828190 1187725 4915 343.032

41

6. Conclusion

An approach to aid in metagenomic assembly called Sigma was presented in this the-
sis. Sigma, a Bayesian model-based hierarchical clustering approach, serves as a
preprocessing tool for partitioning the assembly graph. Sigma was combined with
optimal single genome scaffolder Opera in a pipeline called OperaMS to show that
metagenomic assembly problem can be accurately and automatically reduced to single
genome assembly problem by systematically exploiting assembly information.

Sigma and OperaMS were tested on 4 simulated datasets and 3 real datasets. It
was shown that Sigma partitions the assembly graph with high sensitivity and speci-
ficity. Provided that the quality of the initial contig assembly is high, sensitivity and
specificity are above 95%. In addition, Sigma has low running time and memory re-
quirements. It was also shown that OperaMS produces correct and contiguous scaffold
assemblies, especially when using a combination of a variety of mate-pair/paired-end
libraries. Provided that the quality of the initial contig assembly is high, the error
rate is below 5% and genome scaffold N50 increases contig scaffold N50 by a factor
of 100. In addition, OperaMS manages to almost completely reconstruct 20 � 40%

genomes. The performance of OperaMS seems to degrade in terms of contiguity when
only a short-insert paired-end library is provided. In majority of other cases, OperaMS
outperforms state-of-the-art single genome (Velvet, SOAPdenovo) and metagenomic
(MetaVelvet, Bambus2) assembly tools.

Besides small implementation improvements such as parallelizing the scoring of
the clusters, there are also a few method improvements left to explore such as more
sophisticated parameter estimation for negative binomial distribution. Since this ap-
proach is naturally extendible to incorporate additional information such as k-mer
frequencies, GC content and gene content it should be further refined to exploit that
information in order to distinguish between species with similar abundance and con-
sequently decrease the number of misjoins. The improvements in third generation
sequencing technologies could possibly be used to further improve the method in the
future.

42

BIBLIOGRAPHY

[1] J.C. Wooley, A. Godzik, and I. Friedberg. A primer on metagenomics. PLOS

Computational Biology, 6(2):e1000667, 2010.

[2] R. Knight et al. Unlocking the potential of metagenomics through replicated
experimental design. Nature Biotechnology, 30(6):513–520, 2012.

[3] J. Qin et al. A human gut microbial gene catalogue established by metagenomic
sequencing. Nature, 464(7285):59–65, 2010.

[4] M. Hess et al. Metagenomic discovery of biomass-degrading genes and genomes
from cow rumen. Science, 331(6016):463–467, 2011.

[5] M. Hunt et al. A comprehensive evaluation of assembly scaffolding tools.
Genome Biology, 15(3):R42, 2014.

[6] L. Bragg and G.W. Tyson. Metagenomics using next-generation sequencing. In
Environmental Microbiology, pages 183–201. Springer, 2014.

[7] S. Gao, W. Sung, and N. Nagarajan. Opera: reconstructing optimal genomic
scaffolds with high-throughput paired-end sequences. Journal of Computational

Biology, 18(11):1681–1691, 2011.

[8] D.R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18(5):821–829, 2008.

[9] R. Li et al. De novo assembly of human genomes with massively parallel short
read sequencing. Genome Research, 20(2):265–272, 2010.

[10] S. Koren, T.J. Treangen, and M. Pop. Bambus 2: scaffolding metagenomes.
Bioinformatics, 27(21):2964–2971, 2011.

[11] T. Namiki et al. MetaVelvet: an extension of Velvet assembler to de novo
metagenome assembly from short sequence reads. Nucleic Acids Research,
40(20):e155, 2012.

43

[12] J. Handelsman. Metagenomics: application of genomics to uncultured microor-
ganisms. Microbiology and Molecular Biology Reviews, 68(4):669–685, 2004.

[13] V. Kunin et al. A bioinformatician’s guide to metagenomics. Microbiology and

Molecular Biology Reviews, 72(4):557–578, 2008.

[14] J.A. Gilbert and C.L. Dupont. Microbial metagenomics: beyond the genome.
Annual Review of Marine Science, 3:347–371, 2011.

[15] T. Thomas, J. Gilbert, and F. Meyer. Metagenomics - a guide from sampling to
data analysis. Microbial Informatics and Experimentation, 2(3), 2012.

[16] D. Sims et al. Sequencing depth and coverage: key considerations in genomic
analyses. Nature Reviews Genetics, 15(2):121–132, 2014.

[17] M. Pop. Genome assembly reborn: recent computational challenges. Briefings

in Bioinformatics, 10(4):354–366, 2009.

[18] M. Albertsen et al. Genome sequences of rare, uncultured bacteria obtained by
differential coverage binning of multiple metagenomes. Nature Biotechnology,
31(6):533–538, 2013.

[19] B. Langmead et al. Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome. Genome Biology, 10(3):R25, 2009.

[20] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[21] D.H. Huson, K. Reinert, and E.W. Myers. The greedy path-merging algorithm
for contig scaffolding. Journal of the ACM (JACM), 49(5):603–615, 2002.

[22] R. Xu et al. Survey of clustering algorithms. IEEE Transactions on Neural

Networks, 16(3):645–678, 2005.

[23] E.S. Lander and M.S. Waterman. Genomic mapping by fingerprinting random
clones: a mathematical analysis. Genomics, 2(3):231–239, 1988.

[24] J.O. Lloyd-Smith. Maximum likelihood estimation of the negative binomial dis-
persion parameter for highly overdispersed data, with applications to infectious
diseases. PLOS ONE, 2(2):e180, 2007.

[25] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464, 1978.

44

[26] K. Mavromatis et al. Use of simulated data sets to evaluate the fidelity of metage-
nomic processing methods. Nature Methods, 4(6):495–500, 2007.

[27] I. Nasidze et al. Global diversity in the human salivary microbiome. Genome

Research, 19(4):636–643, 2009.

[28] D.C. Richter et al. MetaSim-A sequencing simulator for genomics and metage-
nomics. PLOS ONE, 3(10):e3373, 2008.

[29] S. Kurtz et al. Versatile and open software for comparing large genomes. Genome

Biology, 5(2):R12, 2004.

[30] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic bi-
nary instrumentation. In ACM Sigplan Notices, volume 42, pages 89–100, 2007.

45

De novo metagenomic assembly using Bayesian model-based clustering

Abstract

Microbial communities influence almost every aspect of our lives. Metagenomics
aims to expand our knowledge of those communities by analyzing DNA samples ex-
tracted directly from their environments. Metagenomic studies still rely mostly on
manual interventions and single genome assembly tools which are unaware of the na-
ture of metagenomic data. In this thesis, a Bayesian model-based hierarchical clus-
tering approach to aid in metagenomic assembly called Sigma is presented. Sigma is
combined with an optimal single genome scaffolder Opera to show that metagenomic
assembly problem can be accurately and automatically reduced to single genome as-
sembly problem by systematically exploiting assembly information. Comparisons on
simulated and real datasets show that this pipeline (OperaMS) outperforms state-of-
the-art single genome (Velvet, SOAPdenovo) and metagenomic (MetaVelvet, Bam-
bus2) assembly tools.

Keywords: metagenomics, de novo assembly, hierarchical clustering, Bayesian infor-
mation criterion

De novo sastavljanje metagenomskih podataka korištenjem grupiranja
podataka temeljenih na Bayesovom modelu

Sažetak

Mikrobne zajednice utječu na gotovo svaki aspekt našeg života. Metagenomika
nastoji otkriti nove spoznaje o tim zajednicama analizom DNA uzoraka izuzetih di-
rektno iz njihovih okoliša. Metagenomska istraživanja se i dalje uglavnom oslanjaju
na ručne intervencije i alate namijenjene za sastavljanje genomskih podataka koji ne
uzimaju u obzir specifičnosti metagenomskih podataka. U ovom radu je predstavljena
metoda za de novo sastavljanje metagenomskih podataka korištenjem grupiranja po-
dataka temeljenih na Bayesovom modelu (Sigma). Pokazano je da se kombiniranjem
te metode s optimalnim skafolderom genomskih podataka (Opera) problem sastavl-
janja metagenomskih podataka može točno i automatski svesti na problem sastavl-
janja genomskih podataka iskorištavanjem informacija dostupnih tijekom sastavljanja
genoma. Usporedbe na simuliranim i stvarnim metagenomskim podacima pokazuju
da kombinacija ovih dvaju metoda (OperaMS) daje bolje rezultate od često korištenih
alata za sastavljanje genomskih (Velvet, SOAPdenovo) i metagenomskih (MetaVelvet,
Bambus2) podataka.

Ključne riječi: metagenomika, de novo sastavljanje genoma, hijerarhijsko grupiranje,
Bayesov informacijski kriterij

