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1. Introduction

Fast development of sequencing technologies is causing exponential growth of nu-

cleotide sequencing throughput, which is putting pressure on development of better

and faster bionformatic tools for analyzing that data.

One of the fundamental operations in bioinformatics is sequence alignment, which

can be divided to heuristic methods and deterministic methods. Deterministic methods

give optimal result of alignment but have quadratic time complexity, while heuristic

methods like BLAST [1] work much faster but give non-optimal results. Because

of their speed most aligners use heuristic methods as their main method but also use

deterministic methods to guide alignment and perform fine tuning. For example, SNAP

[2] uses Landau-Vishkin [3] as core component. Used either independently or as a part

of heuristic method, deterministic methods often prove to spend a significant amount

of CPU time.

One of the successful approaches to make deterministic methods faster is paral-

lelization using single instruction multiple data (SIMD) technology, which is supported

by most modern CPUs. Fastest SIMD implementations of Smith-Waterman-Gotoh al-

gorithm (SW) [4] [5] are Rognes’s Faster Smith-Waterman database search with inter-

sequence SIMD parallelisation (SWIPE) [6] which uses inter-sequence parallelization

and Farrar’s Striped SW (SSW) [7] with SWPS3’s [8] improvement which uses intra-

sequence parallelization. Intra-sequence parallelization is a parallelization of single

pairwise alignment (query and target), while inter-sequence parallelization is a paral-

lelization of database search (query against multiple targets). Both implementations

are significant because SWIPE is faster then SSW but SSW can be applied to more sit-

uations. There are also fast SW implementations which utilize possibilities of modern

GPUs, like SW# [9] and CUDASW++ [10].

Although deterministic algorithms are widely used and it is important that they are

efficient and fast, only few aligners use the most advanced algorithms like SWIPE and

SSW. Main reason for that is complicated implementation of those algorithms which

needs knowledge of SIMD technology and lack of adequate libraries.
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Inspired by SSW Library [11] (SSWL) which extends on Farrar’s SSW and the lack

of sequence alignment libraries we decided to implement our own C/C++ sequence

alignment library. We implemented two libraries, SWIMD and EDLIB.

SWIPE is the fastest algorithm for database search, and therefore we decided it

would be valuable to extend it with few other alignment methods and expose as a

library. SWIMD extends on Rognes’s SWIPE, adding support for Advanced Vector

Extensions 2 (AVX2) and adding two additional semi-global alignment methods and

one global alignment method.

Although [7] is the fastest algorithm for pairwise local alignment, local alignment

is not always needed. In many cases edit distance is good enough and can be much

faster to compute, so we decided to extend from Myers’s Fast Bit-Vector Algorithm

(Myers) [12] which computes edit distance using bit-vectors and expose it as a library.

EDLIB extends on [12], adding support for finding of alignment path and adding two

additional alignment methods, one semi-global and one global.

SWIMD and EDLIB are easy to use, can be applied to any alphabet, and each of

them also comes with its own stand-alone aligner.
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2. SSE

Streaming SIMD Extensions (SSE) is extension to the x86 architecture designed by

Intel. SSE brings 16 128-bit registers which offer SIMD operations. Each register can

contain one of following:

– four 32-bit single-precision floating point numbers

– two 64-bit double-precision floating point numbers

– sixteen 8-bit integers

– eight 18-bit integers

– four 32-bit integers

– two 64-bit integers

In order for system to support SSE, both CPU and the operating system must support

it.

SSE was later expanded with SSE2, SSE3, SSSE3, SSE4.1, SSE4.2 and lately

with AVX and AVX2. Each of this extensions brought some new instructions. Most

machines these days have at least SSE4.1, while newest machines come with AVX and

AVX2.

Since most machines support SSE, adjusting programs to utilize it (if applicable)

often brings great increase in speed. Parallelization achieved with SSE is local for one

CPU, so parallelization scales with number of CPUs.

Some of the SIMD instructions that SSE brings are addition, multiplication, shuf-

fling, shifting, bitwise operations and similar.

Except for using assembly, SSE can also be used through intrinsics. Intrinsic is a

function known by the compiler that directly maps to a sequence of one or more assem-

bly language instructions. When using intrinsics, compiler manages things like register

names, allocations and similar, which makes usage of intrinsics more convenient then

using assembly. Full list of SSE instrinsics can be found at https://software.

intel.com/sites/landingpage/IntrinsicsGuide/. Modern compilers
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even support auto-vectorization of code, which means automatic usage of SSE regis-

ters when convenient.

Another interesting approach to using SSE is Intel SPMD Program Compiler (ISPC)

[13]. It is a special compiler created by Intel, that compiles a variant of C programming

language which has extensions for single program multiple data programming. Idea

of this language is to provide easy way to parallelize code without using intrinsics or

assembly. We tried using ISPC but it turned out that it did not provide enough control

for our needs.

AVX and AVX2 bring new 256-bit registers and new instructions that work on

them. AVX brought instructions for floating point operations, and AVX2 brought in-

structions that operate on integers. Thanks to two times larger registers, AVX and

AVX2 bring speed up of about two times over SSE.

Example of different usage of SSE registers and of SSE addition is shown on figure

2.1.

Figure 2.1: On the left, different usage of SSE registers is shown. On the right, an example of

addition is given. Next to the registers is written their intrinsic type, and next to the operation

of addition is written intrinsic that would perform such addition.
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3. Methods

3.1. Alignment methods

When looking for the best alignment between two sequences, there are many ways

to define what exactly best alignment is and how are we going to score alignment.

Alignment method is usually chosen based on our knowledge about input data and

relation between query sequence and target sequence. Chosing different alignment

method can give very different results. In EDLIB and SWIMD, we sometimes also

refer to alignment method as "alignment mode". In this section we briefly explain

alignment methods that we implemented in SWIMD and EDLIB.

Comparison of alignment methods is illustrated in figure 3.1.

3.1.1. Global

Global alignment method is useful for detecting if two sequences of similar lengths are

similar. It tries to match both sequences completely. The most famous algorithm for

performing global alignment is the Needleman-Wunsch (NW) [14] algorithm.

3.1.2. Local

Local alignment method is useful for finding similar regions in not necessarily similar

sequences, and also for finding a shorter sequence in a longer sequence (text search-

ing). The main algorithm for local alignment is the Smith-Waterman algorithm. Local

alignment method can not be used with edit distance because there is trivial case which

always gives edit distance equal to zero.

3.1.3. Semi-global

Semi-global alignment methods are halfway between global and local alignment meth-

ods. They are used to find best possible alignment which includes start and/or end of
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first and/or second sequence. For example, we can define global alignment method

as semi-global alignment method which includes start and end of the both sequences.

In the rest of this section we describe three semi-global alignment methods that we

implemented in SWIMD and EDLIB (names of the methods are invented):

Hybrid Needleman-Wunsch (HW)

This method includes start and end of query sequence (shorter sequence). That means

that insertions before start and after end of query sequence are not penalized. This

method is useful for finding ashorter sequence in a longer sequence.

Semi-Hybrid Needleman-Wunsch (SHW)

This method includes start and end of query sequence, and start of target sequence.

That means that insertions after end of query are not penalized. This method is useful

when we assume that query is prefix of target.

Overlap (OV)

This method includes start of one of sequences, and end of one of sequences. That

means that insertions before start of one of sequences and insertions after end of one

of sequences are not penalized. OV is useful when sequences are partially overlaping

or one of the sequences is contained in another. OV can not be used with edit distance

because there is trivial case which always gives edit distance equal to zero.

3.2. SWIMD

SWIMD extends on Rognes’s SWIPE, so in this section we describe important al-

gorithms used in SWIPE and at the same time introduce changes that were made in

SWIMD.

Main problem when parallelizing single parwise alignment is data dependency. In

order to calculate one cell in dynamic programming matrix one has to know the values

of cells above, to the left and to the up-left, which is a big constraint for parallelization.

Most basic approach for solving this data dependency is to parallelize the calculation

of one diagonal like Wozniak [15] suggested, while more efficient approach is to par-

allelize calculation of one row in a striped manner (Farrar’s SSW).

Basic idea behind SWIPE is not to parallelize single pairwise alignment, but to achieve
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Figure 3.1: In this illustration we compare methods by showing how each method performs

when aligning each of queries AATGCCTA, CTGC and GGTAACTC against target AACTGCCT.

For scoring system we used: +1 for match, -1 for mismatch or indel. Higher the score, better

the alignment.

parallelization by performing multiple pairwise alignments at the same time. Main ad-

vantage is that there is no data dependency so parallelization is much simpler and

therefore more efficient. However, such approach is useful only when doing database

search (aligning one query against multiple database sequences).

3.2.1. Local alignment algorithm

For local alignment we use Smith-Waterman-Gotoh (SW) algorithm which uses affine

gap penalties. We have database sequence d of length n and query sequence q of

length m. In order to obtain best alignment score we have have to calculate dynamic

programming matrix H. Matrix H is created by putting database sequence along the

columns (each column is assigned to one sequence element) and query sequence along
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the rows (each row is assigned one element from the query sequence). Hi,j is alignment

score of first i elements from q with first j elements from d. Because of Gotoh [5] we

also have to use two additional matrices, E and F, to calculate matrix H. Calculation

of matrix H is defined with the following relations:

Hi,j =

{
max(Hi−1,j−1 + P [qi, dj], Ei,j, Fi,j, 0) i > 0, j > 0

0 otherwise
(3.1)

Ei,j =

{
max(Hi,j−1 −Q,Ei,j−1 −R) i > 0

0 otherwise
(3.2)

Fi,j =

{
max(Hi−1,j −Q,Fi−1,j −R) i > 0

0 otherwise
(3.3)

where P is score matrix (P[qi, dj] is score of aligning qi with dj), R is gap extension

penalty and Q is sum of gap open penalty and R. Optimal local alignment score is found

by finding max Hi,j for 0 < i ≤ m and 0 < j ≤ n.

3.2.2. Additional alignment methods

In SWIPE there is only a local alignment method. In SWIMD we introduce three other

alignment methods: one global and two semi-global methods.

Global

For global alignment we use NW algorithm, together with affine gaps. It is very similar

to algorithm 3.2.1, but with few differences:

– we do not set cells in H to 0 if they reach negative value.

– we do not check every cell for potential maximal score but read optimal score

from the H[m, n].

– different boundary conditions:

H[0, 0] = 0

H[r, 0] = −Q− (r − 1) ∗R, 1 ≤ r ≤ m

E[r, 0] = −∞, 1 ≤ r ≤ m

H[0, c] = −Q− (c− 1) ∗R, 1 ≤ c ≤ n

F [0, c] = −∞, 1 ≤ c ≤ n
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HW

HW method is very similar to global alignment that we just described, with following

differences:

– we obtain optimal score by taking maximal value from the last row of matrix

H.

– different boundary conditions at the upper edge of the matrix:

H[0, c] = 0, 1 ≤ c ≤ n

OV

OV method is also very similar to global alignment that we just described, with fol-

lowing differences:

– we obtain optimal score by taking maximal value from the last row and last

column of matrix H.

– different boundary conditions at the upper and left edge of the matrix:

H[0, c] = 0, 1 ≤ c ≤ n

H[r, 0] = 0, 1 ≤ r ≤ m

3.3. EDLIB

EDLIB extends on Myers’s Fast Bit-Vector Algorithm (Myers) [12], so in this section

we describe important concepts from Myers and also introduce additions and changes

that EDLIB brings.

Problem which EDLIB is solving is determining edit distance between given query

q of length m and target sequence t of length n. Additional property is that positive

number k can be specified, in which case edit distance is found only if it is smaller or

equal to k. If not, it will be reported that there is no such edit distance.

Edit distance is a metric for measuring the difference between two sequences.

There are few versions of edit distance but in this text we will be referring to the most

popular one, Levenshtein distance. Edit distance can be defined as a smallest number

of operations needed to change one sequence into another. Operations available are
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insertion, deletion or substitution of element in sequence. In other words, it means that

matches are scored with 0 while insertions, deletions and mismatches are scored with

1. Opposite from the scoring system that was used in section 3.2 where larger score

was better, here the smallest score (edit distance) is the best score.

Although edit distance is not as flexible and powerful as using score matrix and

affine gaps (which we used in section 3.2), there are many applications where it is

good enough. Because of its restrictions and simplicity, edit distance has some very

interesting properties, which Myers exploited in [12] to create very fast bit-vector al-

gorithm for finding edit distance in O(kn/w) time, where w is the word size of the

machine (in number of bits, usually 32 or 64).

First we describe basic concepts from Myers but only for HW alignment method,

and next we introduce NW and SHW, which are alignment methods that we added in

EDLIB.

3.3.1. The basic algorithm

Most basic approach to finding edit distance is computing dynamic programming ma-

trix C that has m + 1 rows and n + 1 columns. Computation of C is defined with the

following relations:

C[i, j] = min


C[i− 1, j − 1] + (if q[i] = t[j] then 0 else 1),

C[i− 1, j] + 1,

C[i, j − 1] + 1

 (3.4)

C[0, j] = 0 (3.5)

C[i, 0] = i (3.6)

We find optimal solution by taking minimal value from the last row of the matrix C.

Important observation is that to calculate one column, only column before is needed.

Another important observation is that the difference between adjacent cells in matrix C

is always 1, 0 or -1. We will define horizontal delta ∆h[i, j] as C[i, j]−C[i, j− 1] and

vertical delta ∆v[i, j] as C[i, j]−C[i− 1, j]. Based on this, we can transform problem

of computing C into problem of computing matrix ∆v, which is the matrix of vertical

differences between adjacent cells in C.

Both matrices and relation between them are shown on figure 3.2.

What we want is to use bit-vector operations in order to compute columns of ∆v in

O(1) time. In order to be able to do that, we will assume for a short while that m ≤ w.

We will also assume that simple operations on bit-vector like or, and, not and addition

10



Figure 3.2: Matrices C and ∆v for query throw and target bathroom are shown. In both

matrices initial conditions are colored with darkest grey. Initial conditions depend on alignment

method, which is HW in this case. Small gray circles in matrix C are vertical deltas. Small

squares on top of matrix ∆v are initial horizontal deltas (they are initial condition).

take constant time.

Since m ≤ w we consider storing one column in one bit-vector but it is not possible

because each cell in the column can have three different values. Therefore we will

represent each column with two bit-vectors, Pv and Mv. For ∆vj (j-th column) we

define two bit-vectors Pvj and Mvj with the following relations (for i ∈ [1, w]):

Pvj[i] = if ∆vj[i] = +1 then 1 else 0 (3.7)

Mvj[i] = if ∆vj[i] = −1 then 1 else 0 (3.8)

Pvj is word that has bit set when corresponding cell in ∆vj is positive (equal to 1),

while Mvj is the word that has bit set when corresponding cell in ∆vj is negative

(equal to -1). See figure 3.3 for example.
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Figure 3.3: Representation of ∆vj = [+1,−1,+1, 0] using bit-vectors Pvj and Mvj . Bit in

Pvj is set to 1 only when corresponding cell in ∆vj equals +1, otherwise it is 0. Bit in Mvj is

set to 1 only when corresponding cell in ∆vj equals −1, otherwise it is 0.

The next important step is to find the way to efficiently calculate ∆vj from ∆vj−1.

We introduce Eq[i, j] as a bit quantity which is 1 if q[i] = t[j], otherwise it is 0.

We look at 4 adjacent cells in matrix C (two from column i and two from column i - 1)

and deltas between these cells, as shown on 3.4. There are four deltas, two horizontal

Figure 3.4: Four adjacent cells from matrix C and four deltas between them are shown on the

left picture. On the right picture is simplified drawing of relations between deltas: ∆v[i, j]

(∆vout) and ∆h[i, j] (∆hout) can be computed from Eq[i, j] (Eq), ∆v[i, j − 1] (∆vin) and

∆h[i− 1, j] (∆hin).

and two vertical deltas: ∆v[i, j], ∆h[i, j], ∆v[i, j − 1] and ∆h[i− 1, j].

Using definition of deltas and relation 3.4, we can express ∆v[i, j] and ∆h[i, j] in terms

of Eq[i, j], ∆v[i, j − 1] and ∆h[i− 1, j] (see [12] for more details):

∆v[i, j] = = min(−Eq[i, j],∆v[i, j − 1],∆h[i− 1, j]) + (1−∆h[i− 1, j]) (3.9)

∆h[i, j] = = min(−Eq[i, j],∆v[i, j − 1],∆h[i− 1, j]) + (1−∆v[i, j − 1]) (3.10)

Because of this relations, we can look at ∆vin = ∆v[i, j− 1], ∆hin = ∆h[i− 1, j] and
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Eq = Eq[i, j] as inputs to computation, and at ∆vout = ∆v[i, j] and ∆hout = ∆h[i, j]

as outputs.

Next observation is that ∆vin and ∆hin each can have three possible different val-

ues, and that Eq can have two possible different values. Therefore there are only

3 ∗ 3 ∗ 2 = 18 different inputs when computing ∆vout and ∆hout.

We define Pvin and Mvin as bit values representing ∆vin, in the same fashion like

defined before for ∆vj . Analogous to that, we also define Pvout, Mvout and corre-

sponding terms for horizontal deltas. Next, studying possible combinations of inputs

and their outputs, we define relations for computing ∆vout and ∆hout in somewhat dif-

ferent manner, using auxiliary bit values Xv and Xh and representing delta values using

defined bit values:
Xv = Eq or Mvin

Pvout = Mhin or not (Xv or Phin)

Mvout = Phin and Xv

(3.11)

Xh = Eq or Mhin

Phout = Mvin or not (Xh or Pvin)

Mhout = Pvin and Xh

(3.12)

In order to be able to calculate next colum in matrix ∆v, we need to know the

Boolean value Eq for each cell. Since we are working with bit vectors, we need Eq

values also stored in bit vectors. Doing that for each column while computing matrix

∆v would slow us down significantly since we want to be able to calculate one column

in O(1) time.

Luckily, we can exploit the fact that alphabet has finite size and construct all needed bit

vectors containing Eq values in preprocessing step. We build array Peq which is the

same size like alphabet, and whose elements are defined with the following relation,

where s is symbol from alphabet:

Peq[s][i] = (if q[i] = s then 1 else 0) (3.13)

For calculating ∆vj we will use Peq[t[j]].

To actually be able to find the optimal score (edit distance), we need an efficient

way to calculate one column (∆vj) from previous column (∆vj−1). When calculating

column ∆vj we will actually be calculating Pvj , Mvj and Scorej . Input to this calcu-

lation are Pvj−1, Mvj−1, Scorej−1, t[j] (using which we obtain Peq[t[j]]) and initial
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horizontal delta ∆h[0, j] which is initial condition. Initial conditions are:

Pv0 = [1, ..., 1]

Mv0 = [0, ..., 0]

Score0 = m

∆h[0, j] = 0, 1 ≤ j ≤ n

(3.14)

To calculate vertical deltas of the new column (∆vj) using relations 3.11, we need

to know horizontal deltas for that column (∆hj).

Therefore we will split our computation in two steps: first step is to compute horizontal

deltas using relations 3.12, and second step is to compute vertical deltas using relations

3.11. When first step is finished, we will shift horizontal deltas down, pushing last

horizontal delta out and putting inital horizontal delta as first. Last horizontal delta,

which we just pushed out, we will use to update the Score.

Obvious problem here is that, in first step, to calculate one horizontal delta we need

horizontal delta above, which means we would have to calculate them one by one

which takesO(m) time and we needO(1) solution. For now we will solve this problem

by assuming that we can compute Xh in O(1) time, and later we will show how this

can be done.

Using relations 3.11 and 3.12 we obtain following formulas that describe compu-

tation of a new column:

Phj[i] = Mvj−1[i] or not (Xhj[i] or Pvj−1[i])

Mhj[i] = Pvj−1[i] and Xhj[i]
(3.15)

Scorej = Scorej−1 + (1 if Phj[m])− (1 if Mhj[m])

Phj[0] = Mhj[0] = 0
(3.16)

Pvj[i] = Mhj[i− 1] or not (Xvj[i] or Phj[i− 1])

Mvj[i] = Phj[i− 1] and Xvj[i]
(3.17)

Formulas 3.15 (step 1) and 3.17 (step 2) describe computation of bits in bit vectors.

However, we do not calculate bit by bit, instead we calculate all of them in parallel

using bitwise operations on bit vectors.

In formulas 3.16 we describe work that is done in between steps. When we set initial

horizontal delta by setting Phj[0] and Mhj[0] to 0, it is important to notice that this

operation depends on the value of initial horizontal delta. In this case initial horizontal
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delta is always 0 because we are using HW alignment method, however if horizontal

delta was not 0 but had some different value (because we were using some other align-

ment method or block version of algorithm), we would have set Phj[0] and Mhj[0]

accordingly.

Computing Xh

Before we assumed that we can computeXh inO(1) time, and in this section we show

how. Problem is that to compute Xhj we need Mhj , and to compute Mhj we need

Xhj . By unwounding this cyclic dependency and determining a way to compute it in

constant time using bit vectors as shown in Myers [12], we get the following formula:

Xhj = (((Peq[t[j]] & Pvj−1) + Pvj−1) ˆ Pvj−1) | Peq[t[j]] (3.18)

where &, | and ^ are bitwise operators AND, OR and XOR, respectively. What this

formula actually does is: when there is a bit set in Eq (at position i), it also sets that

bit in Xh, and it also sets k next higher bits in Xh if there is a run of k set bits in Pv

starting with i-th bit. Important thing to mention here is that formula above works only

for HW alignment method. In order to work correctly for other methods, Peq[t[j]][1]

should be set to 1 if Mhj[0] is set to 1 (this is because of initial horizontal delta).

We have shown that using bit vectors we can calculate new column in constant

time. However, we do not have access to individual cells in matrix (because that would

ruin constant time of computation) but only to outputs of blocks. We do have access to

score of the last cell in a block, which is represented as Score output. Time complexity

of this basic algorithm is O(mσ + n) (O(mσ) is complexity of building Peq, and

O(n) is complexity of calculating columns of matrix ∆v), and space complexity is

O(σ) (since one column can fit in one word).

3.3.2. Block algorithm

Algorithm that we described in section 3.3.1 is usable only when length of query is

not larger then the length of the word (m ≤ w). In this section we extend the basic

algorithm so it can be used with queries of arbitrary length, and then we extend that

algorithm to banded block algorithm that will use blocks but calculate only a portion

of dynamic programming matrix.

If we have a query of length m that is larger then word length w, then whole matrix

column does not fit in one bit vector. We solve this problem by splitting each column
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into blocks of size w. Therefore, each column contains B = dm/we blocks, and our

dynamic programming matrix is transformed into B × n matrix of blocks. Time com-

plexity of this algorithm isO(mσ+dm/wen), while space complexity isO(dm/weσ).

We can calculate blocks either column by column, row by row, or diagonal by

diagonal, since for each block we need block above and block to the left to be already

calculated. We calculated them column by column since it is simpler then by diagonals,

and it takes less memory to store last column (B blocks) then last row (n blocks) since

query is usually much smaller than target and blocks are oriented vertically.

We also adjust Peq: since there are B blocks in one column, Peq[σ] no longer

contains bit vector but array that contains B bit vectors, each for one block.

If m is not a multiple of w then last block will have W = w− (m mod w) too many

cells. We solve this by padding query sequence with W wildcard characters. Wildcard

characters are special characters which match with all other characters from alphabet.

We support this when building Peq by always setting bit to 1 when wildcard in query

is encountered, regardless of element from target.

Because of padding that we introduced, Score of last block in column will no longer

hold correct value if W > 0. Instead, its Score contains Score of block that is W

positions to the left. That means that Scores of blocks in the last row are shifted to

the right for W positions. Having this in mind we can easily obtain correct scores,

however last W scores are lost because of shifting. We can solve this either by also

padding target with W wildcards (as suggested in [12]) or by going manually through

last W cells(bits) of last block in last column. First approach is somewhat simpler,

but second approach is more efficient and that is what we used in implementation of

EDLIB. Padding using second approach is illustrated in figure 3.6.

Initial horizontal deltas

In basic algorithm, one of inputs to a new column(block) was initial horizontal delta

(also called input horizontal delta), which was defined by the alignment method that

we were using (and it was always 0 for HW). This was valid because all blocks were

starting at the upper boundary of matrix. In our block based algorithm not all blocks

start at the upper boundary of matrix and such blocks will for their initial horizontal

delta use last horizontal delta of the block above. On figure 3.5 is illustrated how we

connect inputs and outputs of adjacent blocks.

As said before, if we are using HW as alignment method, initial horizontal deltas

at top boundary are always 0. However, if we use SHW or NW, then those initial
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Figure 3.5: Connecting inputs and outputs of adjacent blocks. Last horizontal delta of block

above becomes first horizontal delta for new block. Vertical deltas of block to the left become

input vertical deltas for new block.

horizontal boundaries will not be 0 but always 1.

Important thing to notice is that input horizontal deltas may be +1, 0 or -1, and

we should keep this in mind while applying algorithms described in 3.3.1 as there are

some modification that need to be done in such case (all of them were mentioned and

described).

3.3.3. Banded block algorithm

Next, we extend from block algorithm to banded block algorithm. Main idea behind

banded algorithms is to determine which cells are certainly not part of solution, and

then not compute that cells. One of most popular banded algorithms is Ukkonen’s

Algorithms for Approximate String Matching [16]. We define band as span of adjacent

cells/blocks of one column such that all cells/blocks that are outside of band (above

or beneath it) are certainly not part of solution. Therefore, we represent band for one

column as pair of integers (firstB, lastB) where firstB is index of first cell/block in

band, and lastB is index of last cell/block in band.

Usually, banded algorithms are provided with parameter k, which is upper limit

for best solution. In other words, only solutions not bigger then k will be explored.

Algorithm that we are going to describe also takes parameter k.

There are different approaches to determining band. One approach is to determine

band of cells that are to be computed in advance, based on k. This is obviously not
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optimal since during computation of matrix we obtain some information that we will

not be using.

Somewhat more complicated approach is to also adjust band during computation, us-

ing values of computed cells to determine if band should be narrower/wider. Although

better guided, in this approach it is important to be careful not to spend to much re-

sources on adjusting the band (if we spend too much time trying to adjust the band, it

may negate the benefits of adjusting it).

We have chosen second approach, and will adjust band each time after column

has been computed. While, like we mentioned before, adjusting band each time after

column has been computed may be too expensive (time consuming), it is actually very

convenient since we use blocks, not cells. Since we use blocks, we can not easily

access individual cells inside one block. However, we do know the value of last cell

in each block as it is stored in Score. This does provide us with less information to

adjust the band, but it also makes adjustment of band faster (since we deal with lot less

information to process), and therefore makes this approach the best choice.

When calculating new column, it can happen that we are computing block b whose

left neighbour we never computed, because it was outside of previous column band.

In that case we have to determine what will we use as input for block b. Since we

know that block to the left is not part of solution and that it is not really important

for calculation of block b, we put the most pesimistic input possible (which is when

all ∆vs are equal to 1). By doing this, we ensure that no score in cells in block b is

obtained by advancing from cells from block to the left.

Example of banded block computation is shown in figure 3.6.

When we compute new column, we use band from the previous column. Then we

adjust the band, and in case it becomes wider, we calculate that one more block (it

will never grow for more then one block). It is important to notice here that index of

first block in band can only increase, while index of last block can both increase or

decrease. This new band is then used to compute next column, and so on.

Time complexity of the banded block algorithm isO(kn/w), and space complexity

is same like for the block algorithm, O(dm/weσ).

Although they are all based on the the same approach, we use different algorithms

for adjusting the band depending on the alignment method. Blocks and cells are 1-

indexed (first block/cell has index 1).
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Figure 3.6: Example of banded block computation where B = 2, w = 4, W = 2 and we are

using SHW alignment method. Cells marked with x are cells that are part of solution (that are

inside band). Blocks that have at least one cell that is inside band are also inside band, and are

colored gray. Cells with wave pattern are padding cells. Sj label represents score of column

j that propagates from the last row of matrix. All scores are shifted two cells down and two

cells to the right. Thick left boundary of block with label 1* represents input where all vertical

deltas equal 1, which is used when block to the left was not computed.

Band adjustment for HW and SHW

We created this algorithm by extending from algorithm in Myers [12] and introducing

some changes.

For HW and SHW, cell is not part of solution if its value is greater than k. There-

fore, we will say that block is outside of band if all its cells have value greater then

k.

Initial band Band for first column is set to (1,min(d(k + 1)/we, B)). First block

of band is set to first block in column, and last block of band we determine based on

the fact that the first cell of first column is always 0, and every next cell is bigger then

previous cell for 1. That means that i-th cell has value i−1 and that we want first k+1

cells in our band, therefore the formula above.

One simple condition that we can use to detect if computed block is outside of band
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is following:

Score ≥ k + w (3.19)

Here we should remember that Score is value of last cell in block. If this condition is

satisfied, then block is certainly outside of band. If not, then we can not say for sure if

block is outside of band of not, so we ussualy assume it is.

Idea behind this is that although we know only value of last cell, we also know that

difference between two adjacent cells is always +1, -1 or 0. Therefore, the smallest

value first cell in block can possibly have is Score − w + 1, and other cells will also

not have smaller value then that. Block is outside of band if all cells are outside of

band, which means that each cell has to satisfy condition s > k where s is value of

cell. Since we know that for each cell in block statement s ≥ Score − w + 1 is

correct, combining it with condition s > k we get that block is outside of band if

Score− w + 1 > k. By reshaping this condition a bit, we get condition 3.19.

Next we are going to explain how we adjust the band after new column has been

computed.

Adjusting first block We adjust first block of band only for SHW, because HW has

such initial conditions that first block is always part of solution. First block is adjusted

by checking the condition 3.19. As long as the condition is satisfied, we increase index

of the first block in band for one.

Adjusting last block Concerning the last block in band, first we check if band can

be increased for one block. We do this by using condition from Myers:

(Score−∆hout ≤ k) and ((PeqNext & 1) or ∆hhout < 0) (3.20)

where Score and ∆hout are outputs of last block, and PeqNext is entry from Peq for

block below. The idea behind this condition is to check first cell of new block could

have value that is not greater then k. If condition is satisfied, we increase index of last

block for one and calculate this new block.

After we tried to increase the index of last block in band, next we try to reduce it. Same

like we did with the first block, we decrease index of last block in band for one as long

as condition 3.19 is satisfied for it.

Band adjustment for global alignment (NW)

Following algorithm is not from [12] but was created by us.
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Important difference between global alignment and semi-global alignment is that

solution for global alignment (NW) must reach last cell in last column of dynamic pro-

gramming matrix, while in semi-global alignment methods last cell of any column can

be the solution. Therefore, we can introduce much stricter conditions for determining

if a block is outside of band.

We define conditions that define which cells are in band.

We define S(r, c) as value of cell from row r and column c.

We also define S ′(r, c) as optimal score when aligning last m − r characters of query

with last n − r characters of target. After we have computed cell (r, c) we still do

not know value of S ′(r, c), but we can determine its lower limit. We can easily see

that lower limit for S ′(r, c) is achieved when there are only matches (no mismatches)

and we move diagonally until we hit the boundary (bottom or right) of matrix. Then

we move along the boundary until we reach the last cell of last column in matrix.

Therefore, we get the following lower limit:

S ′(r, c) ≥ |(n− c)− (m− r)| (3.21)

Last, we define S ∗ (r, c) as best solution for aligning query and target such that cell

from row r and column c is part of solution. We can easily notice following:

S∗(r, c) = S(r, c) + S ′(r, c) (3.22)

As we said before, cell is part of band if it is part of final solution that is not larger than

k. Therefore, cell (r, c) must satisfy condition

S∗(r, c) ≤ k (3.23)

in order to be inside band. If this condition is not satisfied, cell is out of band.

Combining equations above, we get the following:

S∗(r, c) ≤ k

S(r, c) + S ′(r, c) ≤ k

S(r, c) + |n− c− (m− r)| ≤ k

|n− c−m+ r| ≤ k − S(r, c)

In order for last line to have a possible solution, right side must be non-negative, so we

continue with assumption that S(r, c) ≤ k. This is actually the basic condition, since
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cell is certainly not in band if its score is larger then k.

S(r, c)− k ≤ n− c−m+ r ≤ k − S(r, c)

S(r, c)− k − n+m+ c ≤ r ≤ k − S(r, c)− n+m+ c

Finally, we can say that cell (r, c) is inside band if and only if three following

conditions are met:

S(r, c) ≤ k (3.24)

r ≥ S(r, c)− k − n+m+ c (3.25)

r ≤ k − S(r, c)− n+m+ c (3.26)

What we need is, after we computed specific column, to determine which cells in

it are in/out of band. Obviously, equations 3.25 and 3.26 represent boundaries of band.

Adjusting first block We describe how to adjust first block of band. We are in-

terested in detecting cells that are above band, and that are cells that do not satisfy

equations 3.24 or 3.25. In other words, that are cells that satisfy at least one of the

following equations:

S(r, c) > k (3.27)

r < S(r, c)− k − n+m+ c (3.28)

However, we know only value of last cell in each block, which is Score. Therefore, we

adjust equations 3.27 and 3.28 so they become applicable to blocks.

As already shown in section 3.3.3, condition 3.27 is met for whole block when condi-

tion 3.19 is met.

Next, we notice that if condition 3.28 is met for the last cell in block, it is also met for

all other cells in block. We can prove this easily: let r’ be row and Score’ be score of

some cell from block whose last cell satisfies condition 3.28 and rlast be row of the last

cell in block:

r′ = rlast −∆r

rlast < Score− k − n+m+ c

From above, we get following:

Score′ ≥ Score−∆r

r′ + ∆r < Score′ + ∆r − k − n+m+ c

r′ < Score′ − k − n+m+ c
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which shows that condition 3.28 is met for all cells in block (actually, for all cells in

the column for which r ≤ rlast), if it is met for last cell in block.

Therefore, we get the following rule for adjusting first block:

While condition

(Score ≥ k + w) or (rlast < Score− k − n+m+ c)

is met, increase index of first block in band for one.

Adjusting last block We describe how to adjust last block of band. We are interested

in detecting cells that are below band, and that are cells that do not satisfy equations

3.24 or 3.26. In other words, that are cells that satisfy at least one of the following

equations:

S(r, c) > k (3.29)

r > k − S(r, c)− n+m+ c (3.30)

Again, we have to adjust this equations to work for blocks. We already know how to

adjust equation 3.29, so we only have to adjust equation 3.30.

We address score of first cell in block as Scorefirst, and its row as rfirst. We notice that

if condition 3.30 is met for the first cell in block, then it is also met for all other cells

in block (actually, for all cells in the column for which r ≥ rfirst). Proof is analogous

to the one for adjusting first block, so we will not write it here.

However we do not know the value of first cell in block, so we express the condition

rfirst > k − Scorefirst − n + m + c using last cells of blocks (we define ScoreprLast
as score of last cell in block above):

rfirst = rlast − w + 1

Scorefirst ≥ max(ScoreprLast − 1, Score− w + 1)

rfirst > k − Scorefirst − n+m+ c

rlast − w + 1 > k −max(ScoreprLast − 1, Score− w + 1)− n+m+ c

rlast > k −max(ScoreprLast − 1, Score− w + 1)− n+m+ c+ w − 1

Therefore, we get the following rule for adjusting the last block:

While condition

(Score ≥ k + w) or (rlast > k −max(ScoreprLast − 1, Score− w + 1)− n+m+ c+ w − 1)

is met, decrease index of last block in band for one.

However, before trying to narrow the band, we should try to make it bigger. We do
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this by checking if last block satisfies the condition above, if not then we increase the

band for one block and compute it. After that, we try to decrease index of last block as

described above.

Initial band Before we start computing dynamic programming matrix, we have to

determine initial band size that will be used for first column. We start from S∗(r, c) ≤ k

but apply c = 1 and use fact that S(r, 1) = r − 1:

S∗(r, 1) ≤ k

r − 1 + |n− 1−m+ r| ≤ k

|n− 1−m+ r| ≤ k − r + 1

In order for last line to have a solution, right side must be non-negative, so we continue

with assumption that r ≤ k + 1:

r − k − 1 ≤ n− 1−m+ r ≤ k − r + 1

−k ≤ n−m ≤ k − 2r + 2

Therefore, we get that first column band contains all cells for whom all following

conditions are satisfied:

r ≤ k + 1

m− n ≤ k

r ≤ 1

2
(k + 2 +m− n)

We notice that another condition that has to be met in order for solution to exist is that

k > |m− n|. Combining this with above, we get that solution exists only if condition

k > |m− n| (3.31)

is met, and in that case band for first column is defined as(
1,

⌈
min

(
k,
⌊
1
2
(k + 2 +m− n)

⌋)
w

⌉)
(3.32)
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4. Implementation

When implementing SWIMD and EDLIB, we focused on speed but also on usabil-

ity. Both were implemented as C/C++ libraries and were developed and tested on

Linux(Ubuntu). Both libraries are public and are available online as git reposito-

ries. SWIMD is available at http://github.com/Martinsos/swimd, while

EDLIB is available at http://github.com/Martinsos/edlib.

Both SWIMD and EDLIB can work with any alphabet given.

4.1. SWIMD

For utilizing SIMD technologies we used Intel intrinsics, which are available through

immintrin.h. All scores in SWIMD are integers, so we used data type __m128i

and intrinsics that work with integers.

Library is simple to use and exposes only one function: swimdSearchDatabase.

swimdSearchDatabase takes following input: query sequence, database sequences,

gap open penalty, gap extension penalty, score matrix, length of alphabet, alignment

method(mode). It is interesting to note here that sequences are not given as arrays of

characters, but as arrays of indices of characters in alphabet. Output is array of scores,

one for each database sequence.

AVX2 is recognized by EDLIB and is automatically used if available, if not SSE4.1

is used.

4.1.1. Parallel processing of multiple database sequences

We process multiple database sequences at once using SSE vectors. Depending on

integer precision that we use for alignment score, SSE vector is divided into N fields

(N = 4 for int(32 bits), N = 8 for short(16 bits) and N = 16 for char(8 bits)).

At the beginning we assign each of N sequences to one field in SSE vector. At each

iteration we simultaneously calculate one cell in dynamic programming matrix of each
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sequence. Therefore, we calculate N dynamic programming matrices at once. Calcu-

lation is done column-wise (column by column), and when one column is calculated

each sequence is advanced for one element. When one sequence reaches its end, it

is replaced by the next sequence from the database: next sequence is assigned to the

same field to which old sequence was assigned before.

This process is illustrated by 4.1.

Figure 4.1: In this illustration of parallel processing of multiple database sequences N is 4

and sequences are already assigned to vector fields. Left picture shows SSE vector with 4

sequences. Already processed elements are marked with X, while elements currently being

processed are marked with their index in sequence (which is also index of column in matrix),

starting from 1. Right picture shows corresponding dynamic programming matrices. Third row

is currently being processed, and those cells are colored in darker gray. Cells are labeled with

their row and column indices, both starting from 1.

If we did not use parallelization, for calculation of one cell from H we would need

following: value of cells from H that are to the left, up and up-left, value of cell from

F that is above and value of cell from E to the left. That means we have to keep in

memory previous columns of matrices H and E and value of previous cell from matrix

F.

We use parallelization, so instead of a cell we use an SSE vector. Therefore, we keep

in memory at all times two arrays of SSE vectors (columns from H and E) and one

SSE vector that contains values of previous cells from matrix F.

We can notice that with this kind of parallelization, calculation is basicaly the same

like in the section 3.2.1, only difference is that we work with SSE vectors(which con-

tains N cells) instead of cells and therefore we have N-fold parallelization.
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4.1.2. Core loop

Core part of our computation is calculating new cell in matrix H using relations from

section 3.2.1. Of course we do not work with cells, but with SSE vectors instead.

Below is the pseudocode of core loop:

E = max(prevHs[r] - Q, prevEs[r] - R);

F = max(uH - Q, uF - R);

H = max(F, E);

H = max(H, vector_0);

ulH_P = ulH + P[query[r]];

H = max(H, ulH_P);

maxH = max(maxH, H); // update best score

uF = F;

uH = H;

ulH = prevHs[r];

// Update prevHs, prevEs in advance for next column

prevEs[r] = E;

prevHs[r] = H;

Variables R, F, H, ulH_P, ulH, uF, uH and maxH are SSE vectors, while prevHs and

prevEs are arrays of SSE vectors. r is index of current row, while P is column from

query profile that corresponds to current column.

4.1.3. Dynamic adjusting of integer precision used for alignment
score

To achieve largest factor of parallelization we use 8-bit integer (char) to store our scores

and perform calculations. Using 8-bit score and 128-bit SSE vector we can process 16

database sequences at once (N = 128/8 = 16).

For SW mode we do not use all 8 bits but only 7 bit range from -128 to -1 (we bias

all scores by an offset of 128). Although this reduces our range in half, it ensures that

signed saturation and addition work well for the SW (score never becomes negative

so we do not have to set score manually to zero when negative). Also, usage of neg-

ative range enables the usage of add and subtract signed saturated bytes instructions

which are very fast. We tried using both 8-bit range and 7-bit range and 7-bit range

displayed better performance. For other modes we use 8-bit range because their score

can become negative.
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Problem with using certain precision occurs when score exceeds upper limit of

precision and overflow happens. In that case we have to detect overflow and increase

precision. In SWIPE they use 3 different precisions: 7 bit, 16 bit and 63 bit while

we use 7(8) bit, 16 bit and 32 bit. We use 32 bit because it gives us bigger factor of

parallelization then 63 bit, and we found 32 bits to have range big enough.

First approach we tried is to save state of computation for database sequences

at which overflow occurred and, when all database sequences have been processed,

switch to higher precision and continue calculation of database sequences that over-

flowed (we can continue their computation because we saved their state). However,

saving and then restoring the state of the sequences proved to be too expensive and

made the whole approach inefficient.

Second approach that we tried was similar to first, but without saving state. If

computation for some database sequence overflowed, we would repeat its calculation

with higher precision but from beginning. This approach is used in SWIPE, and it

performs better then first approach because amount of the time lost on saving and

loading state is usually bigger then amount of the time lost when repeating calculation

from beginning.

However, we can notice that range in which score will be and therefore precision

that we need to use depends on scoring system (scoring matrix and gap penalties) and

properties of database sequences.

We also notice that if scoring system mostly contains large values, scores will be high

and larger precision will be needed. In such case the second approach will do a lot

of unneeded computation, since lower precision will not be of much use. For global

and semi-global modes, if database sequences are not similar to query or are of very

different size then query, score will be highly negative and higher precision might be

needed. In that case the second approach will again do a lot of unneeded computation

because it will try to calculate all of sequences using lower precision first, and then

switch to higher precision.

Trying to solve the problems listed above, we implemented third approach. In the

third approach database is divided into chunks of equal size and we compute chunk

by chunk. We start to compute sequences from a chunk using lowest precision until

overflow in one of the sequences is detected. When overflow is detected we switch

to higher precision, repeat computation for sequence that caused overflow and com-

pute all sequences in the chunk that were not computed yet. That way, if most of

sequences require higher precision, only small amount of sequences will be calculated

using lower precision because we will switch to higher precision very soon. Division
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into chunks gives us chance to switch back to lower precision. This approach is more

robust towards scoring system and properties of database sequences and also proved to

be most efficient, so this is approach that we use in SWIMD.

Approach is illustrated in figure 4.2.

Figure 4.2: In this example of precision adjustment using third approach there are three

chunks, each containing 4 database sequences. Sequences are labeled with numbers which

represent lowest precision that is sufficient to compute that sequence without overflow (when

doing calculation this is not known). Three horizontal lines represent precision that was used

to compute certain database sequence. Arrow means that overflow was detected and precision

was increased.

Overflow detection

There is no mention of overflow detection in SWIPE, so we introduce overflow detec-

tion that we used in SWIMD. To detect overflow we use several techiques, depending

on precision and alignment mode that we use. Although overflow happens inside the

core loop, we do not want to check for it in the core loop because we want to keep the

core loop small and fast. Therefore we do as little work about detecting overflow in

the core loop as possible (mostly save some state), and then check for overflow when

one column is calculated.

Saturation arithmetic is a version of arithmetic where result of all operations like

subtraction and addition is limited with minimum and maximum value. If result of

operation goes over the limit, it is set to that limit (for example, with range 0 - 255, we

have 100 + 180 = 255). Saturation arithmetic is supported by SSE for certain types, so

we use it when possible as it simplifies overflow detection.

If using saturation arithmetic it is easy to check for overflow: in core loop we save

most outstanding values and then if any of them is equal to upper/lower limit we say

we detected overflow (this reduces score range by two which is insignificant).

When not using saturation arithmetic, we make assumption that gap penalties and

all scores in score matrix are between lower_range / 2 and upper_range / 2. We check

for this condition when starting calculation and if condition is not met, we increase
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precision. By keeping track of minimal score that occured in core loop we can later

detect overflow by checking if that minimal score is smaller than lower_range / 2.

Only case for which we do not do overflow detection is when using highest preci-

sion of 32 bits, as we do not expect scores to be outside of 32 bit range.

4.1.4. Query profile

When doing computation of matrix H without parallelization, in order to calculate new

cell we need value of P[q[r], d[c]] where r is index of current row, c is index of current

column and P is score matrix.

Since we work with vector of N cells, we build vector PB of values P[q[r], di[ci]] for

1 ≤ i ≤ N where di is database sequence currently assigned to field i of SSE vector

and ci is index of current column for that sequence (column that is currently being

processed). Building such vector is expensive and we want our core loop to be as fast

as possible, so we are going to solve this problem by building query profile (QP).

We can notice that while calculating one column, only r changes. qr is element of al-

phabet, which means that for this column there will at most alphabet_length different

PB vectors, therefore many of PB vectors will be identical. Every time when we move

to a new column (when current database sequences advance for one element) we build

QP by building PBs for all possible values of qr combined with values of di[ci] for

1 ≤ i ≤ N which are fixed for this column. That way we get an array of SSE vectors

called QP where, if we look at it as a table where vectors are rows, rows are labeled

with elements of alphabet and columns are labeled with currently being processed el-

ements of current sequences. Now, when q[r] = e we read needed PB from QP[e].

Assuming query is much larger then alphabet length, we can see that building QP for

each column is much more efficient then calculating each PB in core loop. Illustration

of QP is shown in figure 4.3.

4.1.5. AVX2

SWIMD needs at least SSE4.1 to work, but we also added support for AVX2 (which

SWIPE does not have).

AVX2 brings 256-bit registers which means that we can process double the amount

of database sequences that we could process with 128-bit registers, therefore using an

8-bit precision, we can process 32 database sequences at once!

During compilation, we detect if SWIMD was compiled for AVX2 by checking if

macro __AVX2__ is defined. If yes, instead of 128-bit SSE types and intrinsics we
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Figure 4.3: On the left is shown query profile for alphabet ACTGN, query GCG (for the simplic-

ity of example query is shorter then alphabet, but normally query will be longer then alphabet)

and 4 database sequences (N = 4) whose currently being proccesed elemets are C, T, A and C.

Shown query profile is array that contains 5 SSE vectors (because alphabet length is 5), each

of them containing 4 elements (because N is 4). As show on the right picture, when calculating

first and third row of matrix H, fourth SSE vector from query profile is used, while for the

second row second SSE vector from query profile is used.

use corresponding 256-bit types and intrinsics. AVX2 is needed and not just AVX

because AVX2 brings full support for integer operations on 256-bit vectors. If AVX2

is not supported, then we check if macro __SSE4_1__ is defined. If yes, 128-bit SSE

types and instrinsics are used, otherwise error is thrown.

4.2. EDLIB

In EDLIB we perform SIMD operations by using normal registers as bit-vectors.

There is only one function exposed by library: myersCalcEditDistance.

Input of myersCalcEditDistance is: query, target, length of alphabet, k, align-

ment method(mode), whether to find alignment. Output is score, position in target

where query ended, and alignment path if finding alignment was requested.

If there is no solution lesser or equal than k, error code is returned.

4.2.1. Strong reduction

In order to further speed up the algorithm, every Y columns we apply strong reduction.

That means that we try to adjust band more optimaly by accessing all individual cells

of blocks, and not just last cells of blocks. When accessing individual cells we use
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same equations like ones that we use for blocks (we use versions of equations that

are applicable to cells). This is very time consuming and it reduces complexity of

calculating column from O(dm/we) to O(m), which is the reason why we call this

strong reduction and do not perform it for every column. However, using this method

for big Y we achieved some important speed up, in some cases calculation performed

even two times faster. Reason for this is that for big Y additional time consumption

becomes insignificant, while strong reduction can narrow the band more efficiently and

sometimes even end calculation much earlier by detecting that band stopped to exist.

Although this idea was not described in Myers, it was implemented in code that came

with it, so we also decided to implement it.

4.2.2. Finding alignment path

When finding best alignment score of two sequences, we may also be interested in

exact alignment path. Although it was not implemented in Myers, we decided that

it would be valuable addition for EDLIB to also provide alignment path, if needed.

Some basic ideas for implementing finding of alignment path we took from SSWL

[11] and the rest was our own invention. First we are going to explain what exactly is

alignment path and give some example of it. After that we are going to describe how

we implemented it for global method (NW), and then for HW and SHW since they use

implementation for NW as core component.

Alignment path

We define alignment path as a sequence of operations which, when applied to query

(it could also be target if we defined it that way) transform it into target. We mark

operations with numbers: 0 for match or mismatch, 1 for deletion from query, 2 for

insertion to query. Example of alignment path is shown in figure 4.4.

Figure 4.4: Example of alignment path for query AATGACTA, target AACTGCCT, alignment

method NW and scoring where match is +1 and mismatch, indels and gap penalties are all -1.
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Global method (NW)

When computing dynamic programming matrix, instead of keeping only last row in

memory, we store whole matrix into memory. When computation is done, we recon-

struct path from the stored data.

Usual way to reconstruct the alignment path is to start from the last cell of last

column (one that contains solution) and trace our way back to the first cell of first

column. We trace our way back by checking three neighbouring cells (up, up-left

and left) and chosing one from which we could have possibly come to current cell

and achieve that score. Depending on which cell we chose, we remember operation

needed for that move and add it to alignment path. If we chose left cell then it is query

insertion, if we chose top cell then it is query deletion, and if we chose top-left cell

then it is match or mismatch.

However, we do not immediately know value of each cell in matrix. We have

blocks and know their vertical deltas and values of last cell in each block. When we

need value of i-th cell in block, we start from value of last cell (whose value we know)

and using vertical deltas move up until we obtain the value of i-th cell. This way we

calculate only necessary cells. Illustration of this approach is shown in figure 4.5.

This approach is both time and space consuming (O(mn) space complexity), but it is

important as component for finding alingment for HW and SHW.

Figure 4.5: This is example of finding alignment path for NW. Cells that are on path are

marked with x, while cells that had to be retrieved from blocks in order to find alignment path

are marked with /. Blocks that were computed and stored to memory are colored gray.

33



HW

After best solution for HW is found, we get the score and position end in target where

solution ended. If we also knew beginning position start of solution in the target, we

could find alignment path for that part of matrix using implementation for NW. Best

way to obtain this beginning position is by taking only part of the matrix that is left of

end, inverting query and target and running SHW on it. In other words, we run SHW

on reversed query and reversed prefix of target which contains first end characters of

target. Also, when running SHW, we set score obtained by HW as k parameter for

SHW. As a result of SHW computation we get position start.

When we know both start and end, we run finding alignment path for NW on that part

of the matrix and also set score from HW as its k. Illustration of finding alignment for

HW is shown in figure 4.6.

Figure 4.6: This illustration shows how finding alignment path for HW consists of three parts:

finding end position for HW, then finding start position using SHW and then finding alignment

path using NW.

This is a great example how each of alignment methods is specialized for certain

purpose, and how we can use parameter k to speed up the computation.

Although we run HW, then SHW and then finding alignment for NW, all this operations

do not consume much time or space. That is because SHW is run only for small part

of matrix and also with specified k, and NW is run for even smaller part of matrix,
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approximately of m×m dimensions for most cases because when doing HW query is

usually much smaller then target (this same assumption was used in SSWL). Therefore,

finding score and alignment path for HW when query is much smaller than target

(which is common case) takes about the same time as finding just score.

SHW

Finding alignment path for SHW is very similar to finding it for HW, with only differ-

ence that there is no need to find start as it always starts from first column. Therefore,

to find alignment path for SHW we perform SHW once and then run finding align-

ment path for NW. Same like with HW, this is very efficient and takes about the same

amount of time like finding only score.

4.2.3. Block computation optimization

Central part of computation in Myers is computation of block. Big part of CPU time

is spent on it, and therefore any improvement to its speed also improves speed of the

whole computation.

C-like pseudocode 1 shows how block computation is done in Myers. In EDLIB we

optimized this code by removing if statements and substituting them with bitwise

operations. This way, we achieved speed up of about 30% - 40%. C-like pseudocode

2 is our optimized version of block computation.

4.2.4. Dynamic adjustment of k

Another optimization that we added in EDLIB is dynamic adjustment of k. In HW and

SHW alignment methods, we adjust k during computation by always updating it to

best solution that was found so far. This approach would not be good if we wanted to

find all solutions that are smaller than k, but since we are looking for the best solution

that is smaller than k we can use it. By adjusting k during computation we narrow the

band and therefore speed up the computation.

4.2.5. Working with undefined k

In EDLIB, k does not need to be defined. In such case, we assume that best solution is

wanted, however big it may be. We could easily set k to highest value supported by its

data type, but if we work with k that is not much bigger then the best solution, then the

computation performs much faster. Therefore, we want to guess such k and use it for
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Algorithm 1 computeBlock
1: Input: integer hin and bit-vectors Pv, Mv and Eq

2: Output: integer hout and bit-vectors PvOut and MvOut

3: Xv = Eq |Mv

4: if hin < 0 then
5: Eq | = 1

6: end if
7: Xh = (((Eq & Pv) + Pv) ˆ Pv) | Eq
8: Ph = Mv | ~(Xh | Pv)

9: Mh = Pv &Xh

10: hout = 0

11: if Ph& (1<< 63) then
12: hout = 1

13: end if
14: if Mh& (1<< 63) then
15: hout = −1

16: end if
17: Ph <<= 1

18: Mh<<= 1

19: if hin < 0 then
20: Mh | = 1

21: end if
22: if hin > 0 then
23: Ph | = 1

24: end if
25: PvOut = Mh | ~(Xv | Ph)

26: MvOut = Ph&Xv

27: return (PvOut,MvOut, hout)
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Algorithm 2 computeBlockOptimized
1: Input: integer hin and bit-vectors Pv, Mv and Eq

2: Output: integer hout and bit-vectors PvOut and MvOut

3: hinIsNeg = (hin >> 2) & 1

4: Xv = Eq |Mv

5: Eq | = hinIsNeg

6: Xh = (((Eq & Pv) + Pv) ˆ Pv) | Eq
7: Ph = Mv | ~(Xh | Pv)

8: Mh = Pv &Xh

9: hout = 0

10: hout = (Ph& (1<< 63))>> 63

11: hout− = (Mh& (1<< 63))>> 63

12: Ph <<= 1

13: Mh<<= 1

14: Mh | = hinIsNeg

15: Ph | = (hin+ 1)>> 1

16: PvOut = Mh | ~(Xv | Ph)

17: MvOut = Ph&Xv

18: return (PvOut,MvOut, hout)
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computation.

We start computation with k = w (we tried with different start values and this gave the

best result). If computation does not return any result, then we multiply k by two and

repeat the computation. We repeat this process until solution is found.

4.3. Aligner

For each of libraries we also created basic aligner that serves as an example, for testing

and also as useful tool. Aligner is used through command line and can be given various

options.

Both aligners take fasta files for input and return best score. No alphabet needs to

be specified because aligners detect alphabet automatically, while reading query and

target. Alignment method can be specified as option to both aligners, if not specified

default method is used.

SWIMD aligner also takes some additional options like score matrix and gap penal-

ties. Aligner comes with few already prepared score matrices, but custom score matri-

ces can also be used.

EDLIB aligner takes following additional options: option to find and print align-

ment path, option to set parameter k, option to find scores for only N best sequences.

Besides best score EDLIB aligner also returns position in target where alignment ends.
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5. Results and discussion

In this chapter we compare speed of our libraries with currently best sequence align-

ment implementations available. We measured execution time using C++ function

clock() from ctime library. All aligners were compiled using gcc with -O3 op-

tion. All times are in seconds.

5.1. SWIMD

In this section we describe results of speed comparison of SWIMD with three other

aligners: SSWL [11], SSEARCH(FASTA) [17] and SWIPE [6]. We chose this three

aligners because they are currently best available. SSWL, SSEARCH and SWIPE do

only local alignment so we compared only for local alignment method. SSEARCH is

based on Fararr’s Striped SW [7]. SSWL is both library and aligner, while SSEARCH

and SWIPE are only aligners.

Aligners were tested by querying protein sequences against Swiss-Prot protein

database (contains 541762 sequences, total of 192577305 residues).

Following sequences were used: O74807 (110 residues), P19930 (195 residues), Q3ZAI3

(390 residues), P18080 (513 residues). All sequences and database were obtained from

UniProt (http://www.uniprot.org).

All tests were performed on only one thread, and only scores were calculated (not

alignments). Time spent to read query sequences and database was not measured.

Aligners were tested with following parameters:

– gap opening = 3

– gap extension = 1

– score matrix = BLOSUM50

Aligners were called using following commands:

– SSWL: ./ssw_test -p uniprot_sprot.fasta <query_file>

– SWIMD: ./swimd_aligner -s <query_file> uniprot_sprot.fasta
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– SSEARCH: ./ssearch36 -d 0 -T 1 -p -f -3 -g -1 -s BL50

<query_file> uniprot_sprot.fasta

– SWIPE: ./swipe -a 1 -p 1 -G 3 -E 1 -M BLOSUM50 -b 0 -i

<query_file> -d uniprot_sprot

Database for SWIPE had to be preprocessed using program makeblastdb.

Chart 5.1 shows how much time took for different sequences to be aligned against

UniProtKB/Swiss-Prot database. Tests were performed on Intel Core i7-4770K CPU

@ 3.50GHz with 32GB RAM (AVX2 support). SWIMD was tested both using SSE4.1

and using AVX2.

Figure 5.1: Chart comparing SWIMD with SSWL, SSEARCH and SWIPE.

As we expected, SWIMD with AVX2 was two times faster than SWIMD with

SSE4.1 and was the fastest aligner.

Interesting result is that SWIPE is faster than SWIMD with SSE4.1 although we based

SWIMD on SWIPE. We believe that reason for this is that SWIMD code is not opti-

mized enough. Since we were writing SWIMD for multiple alignment methods and

for AVX2, we gave more care to keeping the code reusable then to optimizing details.

Some optimizations that could be done is doing check for sequence end on each fourth
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column, processing few columns at once in order to optimaly use cache and replacing

intrinsics with assembly code.

5.2. EDLIB

In this section we describe results of comparison of EDLIB with SSWL, with Myers’s

implementation and with Landau Vishkin [3] implementation from SNAP [2].

Tests were performed on Intel Core i3 M 350 @ 2.27GHz with 4GB RAM.

5.2.1. Comparison with SSWL

To compare SSWL with EDLIB, we used two different scenarios: genome read align-

ment and protein comparison. Since we can not specify argument k to SSWL, we also

did not specify it to EDLIB.

Genome read alignment

We compared how fast can aligners align reads to genome. Alignment method from

EDLIB best suited for this purpose is HW, so we compared EDLIB using HW with

SSWL using local alignment.

We used two genome sequences available from National Center for Biotechnology

Information (NCBI):

– e_coli_536 (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/

Escherichia_coli_536_uid58531/NC_008253.fna)

– e_coli_DH1 (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/

Escherichia_coli_DH1_uid161951/NC_017625.fna)

For generating reads we used Illumina read simulator Mason [18], available on (http:

//www.seqan.de/projects/mason/).

To generate N reads of length n from e_coli_DH1 we used command ./mason

illumina -N <N> -n <n> -o reads.fasta e_coli_DH1.fasta. In our

tests, we aligned reads from e_coli_DH1 to e_coli_536.

We executed aligners using following commands:

– EDLIB: ./aligner -a HW reads.fasta e_coli_536.fasta

– SSWL: ./ssw_test e_coli_536.fasta reads.fasta

Table 5.1 shows performance of EDLIB and SSWL for different lengths of reads.
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N = 10, n = 1000 N = 100, n = 100 N = 200, n = 50

EDLIB 12.3 12.8 16.8

SSWL 21.0 49.0 80.0

Table 5.1: Comparison of EDLIB with SSWL for aligning genome reads. Time is in seconds.

Finding alignment path Next, we compared speed of EDLIB and SSW for different

alignment methods with and without returning an alignment path.

For NW alignment method, we used prefix of length 100000 of e_coli_DH1 as

query and prefix of length 100000 of e_coli_536 as target. Table 5.2 shows results

of this comparison. SSWL was not able to return alignment path. It is important to

notice that EDLIB consumed large amount of memory for finding alignment path in

this example.

NW without align. path with align. path

EDLIB 0.98 3.9

SSWL 6.23 -

Table 5.2: Comparison of EDLIB (NW) with SSWL with and without returning alignment

path. Time is in seconds.

For HW alignment method, we used one Illumina read from e_coli_DH1 of length

1000 as query and e_coli_536 as target. Table 5.3 shows results of this comparison.

HW without align. path with align. path

EDLIB 0.15 0.16

SSWL 1.95 1.95

Table 5.3: Comparison of EDLIB (HW) with SSWL with and without returning alignment

path. Time is in seconds.

For SHW alignment method, we used prefix of length 10000 of e_coli_DH1 as

query and e_coli_536 as target. Table 5.4 shows results of this comparison.
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SHW without align. path with align. path

EDLIB 0.02 0.04

SSWL 19.11 19.44

Table 5.4: Comparison of EDLIB (SHW) with SSWL with and without returning alignment

path. Time is in seconds.

EDLIB has shown to be faster then SSWL, especially for small reads. However, we

can see that EDLIB is somewhat slower for small reads than for large reads. Reason

for that is that block in EDLIB is of similar size to query(read) and therefore the is not

really any reducing of band, except when band stops to exist.

Results of finding alignment were as expected: for HW and small query EDLIB

was equally fast with and without finding alignment path. In example for SHW, finding

alignment path was somewhat slower compared to returning only score, but reason for

that is long query. Finding alignment path for NW was slower than returning only

score, which was expected. Important property of EDLIB is that for HW and SHW,

when query is much smaller than target, finding alignment does not affect time of

computation. This property is significant because in most cases, HW and SHW are run

on queries much smaller than target.

Protein comparison

We compared how fast can aligners compare two proteins. Alignment method from

EDLIB best suited for this purpose is NW, so we compared EDLIB using NW with

SSWL using local alignment. We tested for two different scenarios: for similar proteins

and for dissimilar proteins.

We generated proteins artificially, in random fashion. Similar proteins were created

by generating one of them randomly, and then changing it to get similar protein.

We executed aligners using following commands:

– EDLIB: ./aligner -a NW prot1.fasta prot2.fasta

– SSWL: ./ssw_test -p prot1.fasta prot2.fasta

Table 5.5 shows performance of EDLIB and SSWL for similar and dissimilar pro-

teins (~100000 in length each - there are no real proteins that long, but we used them

to get measurable times of computation).
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similar dissimilar

EDLIB 0.01 1.56

SSWL 7.00 7.00

Table 5.5: Comparison of EDLIB with SSWL for comparing proteins. Time is in seconds.

For similar proteins EDLIB is much faster than SSWL, because of its banded algo-

rithm. For dissimilar proteins, EDLIB is still faster but not so much, since band is not

so narrow for dissimilar sequences.

5.2.2. Comparison with Myers’s implementation

We compared EDLIB with Myers’s implementation of his own banded block algorithm

from [12]. Since Myers’s implementation has only HW alignment method, we also

used HW for EDLIB.

In our tests we align read of length n from e_coli_DH1 with e_coli_536.

We executed aligners using following commands:

– EDLIB: ./aligner -a HW -k <k> -s read.fasta e_coli_536.fasta

– Myers: ./myers ‘cat read.fasta‘ <k> e_coli_536.fasta

Tables 5.6 shows performance of EDLIB and Myers’s implementation for different

lengths of read and different values of k.

n = 50 k = 0 k = 5 k = 10 k = 25 k = 50

EDLIB 0.061 0.101 0.100 0.097 0.93

Myers 0.069 0.066 0.065 0.114 0.100

n = 1000 k = 0 k = 10 k = 50 k = 100 k = 500

EDLIB 0.060 0.155 0.208 0.243 0.461

Myers 0.065 0.070 0.173 0.297 1.143

Table 5.6: Comparison of EDLIB with Myers’s implementation. Time is in seconds.

Results show that EDLIB and Myers’s implementation have similar speed, as was

expected since EDLIB is based on [12]. Sometimes it happens that Myers’s imple-

mentation is two times faster then EDLIB. We believe that reason for that is strong

reduction, which seems to be more effective in Myers’s implementation.
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5.2.3. Comparison with Landau Vishkin

We compared EDLIB with Landau Vishkin implementation which we extracted from

SNAP. Since Landau Vishkin from SNAP supports only SHW, we compared only for

SHW method.

In our tests we aligned artificially generated proteins of different lengths and sim-

ilarity. For each pair of query and target we measured the time of running 10000

computations. Time for loading sequences was not measured. Results are shown in

table 5.7.

query length target length score k EDLIB LV

1000 10000 69 100 1.11 0.58

1000 10000 99 120 1.1 1.23

1000 10000 120 150 1.15 1.77

1000 10000 219 250 1.41 6.09

1000 10000 799 900 2.3 68.1

100 1000 19 30 0.12 0.04

100 1000 82 90 0.13 0.68

Table 5.7: Comparison of EDLIB with Landau Vishkin (SHW method). score is edit distance

between query and target. Time is in seconds.

Results show that Landau Vishkin is faster for small scores, while EDLIB is faster

for larger scores. This was expected, because Landau Vishkin algorithm is especially

efficient for small scores. From this results, we conclude that it could be beneficial

for EDLIB, when using SHW alignment method, to use Landau Vishkin algorithm for

small k, and after some threshold switch to Myers’s algorithm.
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6. Conclusion

We implemented two fast C/C++ sequence alignment libraries, both of them based

on algorithms that use SIMD for parallelization. By extending existing algorithms

with additional features and making libraries easy to include and use, we made this

otherwise complex algorithms suitable for usage as components in bioinformatic and

other tools.

Table 6.1 shows main features of SWIMD and EDLIB, compared with features of

SWIPE and Myers.

Library SW NW HW SHW OV Align. path SSE AVX2

SWIMD Y Y Y Y N Y N Y Y

SWIPE N Y N N N N Y Y N

EDLIB Y N/A Y Y Y N/A Y N/A N/A

Myers N N/A N Y N N/A N N/A N/A

Table 6.1: Main features of EDLIB and SWIMD compared with SWIPE and Myers. Y is for

Yes, N is for No, and N/A is for Not Applicable.

For each library we implemented aligner which reads fasta sequences and also

provides additional options, depending on library.

We shortly explained local, global and few semi-global alignment methods and

compared their usage. For each of them we have shown scenario in which it is most

useful.

It is interesting to mention that in EDLIB we devised our own algorithm for ad-

justing the band of global alignment method. Another interesting modification that

we added is block computation optimization. By adding finding of alignment path

we made library usable in more applications, and have also shown how different align-

ment methods are appropriate in different situations and can be used together to achieve

wanted result.
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Adding support for AVX2 in SWIMD worked as expected by providing two times

speed up, and comparing it with other algorithms we have shown that SWIMD with

AVX2 is the fastest database search algorithm.

SWIMD using SSE4.1 is somewhat slower than SWIPE, and EDLIB in some sit-

uations works slower than Myers’s implementation. Therefore, although a challenge

while trying to mantain reusable and extensible code, there is still space for improve-

ment and further optimization of both libraries.

We believe, since there is not many sequence alignment libraries available, that

libraries we implemented are going to be very useful and improve both performance

and development of many bioinformatics tools.
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An SIMD dynamic programming C/C++ Library

Abstract

Deterministic sequence alignment algorithms like Smith-Waterman and Needleman-

Wunsch are slow but give optimal result. They are used in many bioinformatic tools as

core components and very often they consume significant amount of CPU time. In or-

der to make them faster, different fast implementations have been implemented, many

of them performing parallelization using Single Instruction Multiple Data (SIMD) sup-

port on CPU or GPU. However, most of these fast implementations are either stand-

alone tool or part of larger tool and were not made to be reusable, which is limiting

their usage.

In order to make some of this implementations reusable, we implemented two

C/C++ libraries for sequence alignment, both based on fast SIMD implementations.

SWIMD is library for database search and is based on Rognes’s Faster Smith-Waterman

database searches (SWIPE). In our implementation we added one global and two semi-

global alignment methods. We also added support for AVX2 instruction set. We com-

pared SWIMD with currently best implementations like SSW, SSEARCH and SWIPE

and showed that SWIMD implementation using AVX2 is the fastest.

SWIMD is available from http://github.com/Martinsos/swimd.

EDLIB is library for pairwise sequence alignment using edit distance and is based on

Myers’s Fast Bit-Vector Algorithm. We added one global and one semi-global align-

ment method. For global method we have shown how to calculate the band. We also

added finding of alignment path.

EDLIB is available from https://github.com/Martinsos/edlib.

By implementing this two libraries we provided reusable components important

for many bioinformatic tools, but also usable for other purposes. We believe this will

enable wider usage of fast SIMD algorithms and that many tools could benefit from

using them.

Keywords: bioinformatics, sequence, alignment, SIMD, SSE, AVX2, library, paral-

lelization



C/C++ biblioteka za dinamičko programiranje korištenjem SIMD instrukcija

Sažetak

Deterministički algoritmi za poravnanje sekvenci poput Smith-Waterman algoritma

i Needleman-Wunsch algoritma su spori ali daju optimalno rješenje. Koriste se u

mnogim bioinformatičkim alatima kao centralna komponenta i često veliki dio ukupnog

vremena računanja odlazi upravo na njih. Kako bi se takvi algoritmi ubrzali nastale su

brojne brze implementacije, od kojih veliki dio provodi paralelizaciju korištenjem ista-

instrukcija-različiti-podaci (engl. Single Instruction Multiple Data) (SIMD) podrške na

procesoru ili grafičkoj kartici. Većina takvih brzih implementacija su samostalni alat

ili dio nekog većeg alata te nisu napravljene za ponovno korištenje, što ograničava

njihovu uporabu.

Kako bismo neke od brzih implementacija učinili ponovno iskoristivima imple-

mentirali smo dvije C/C++ biblioteke za poravnanje sekvenci, obje temeljene na brzim

SIMD implementacijama.

SWIMD je biblioteka za pretragu baze i temelji se na Faster Smith-Waterman database

searches (SWIPE) od Rognes-a. U našoj implementaciji dodali smo jednu globalnu i

dvije polu-globalne metode poravnanja. Takod̄er smo dodali podršku za AVX2 skup

instrukcija. Usporedili smo SWIMD sa trenutno najboljim implementacijama: SSW,

SSEARCH i SWIPE. Pokazali smo da je SWIMD uz korištenje AVX2 skupa instruk-

cija najbrža implementacija.

SWIMD je dostupan na http://github.com/Martinsos/swimd.

EDLIB je biblioteka za poravnanje dvaju sekvenci koristeći udaljenost ured̄ivanja i

temelji se na Fast Bit-Vector Algorithm od Myers-a. u EDLIB-u smo dodali jednu glob-

alnu i jednu polu-globalnu metodu poravnanja. Za globalnu metodu smo pokazali kako

izračunati pojas ćelija u matrici koje su dio rješenja. Takod̄er smo dodali pronalazak

puta poravnanja. EDLIB je dostupan na https://github.com/Martinsos/edlib.

Stvorivši SWIMD i EDLIB stvorili smo ponovno iskoristive komponente važne za

brojne bioinformatičke alate ali takod̄er iskoristive i u druge svrhe. Vjerujemo da će

SWIMD i EDLIB omogućiti širu upotrebu brzih SIMD algoritama i da će mnogi alati

imati koristi od njih.

Ključne riječi: bioinformatika, sekvenca, poravnanje, SIMD, SSE, AVX2, biblioteka,

paralelizacija
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