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1. Introduction

Field of Bioinformatics is currently one of the most fast-growing scientific areas. Its

real-world application is numerous. For example, it is used for identifying correlations

between gene sequences and diseases, predicting protein structures from amino acid

sequences, aiding in the design of novel drugs and tailoring treatments to individual

patients based on their DNA sequences (pharmagenomics) [1].

Sequencing is a process of determining the order of individual nucleotid bases -

Adenyne, Thymine, Cytosine, Guanine and Uracil - inside of the RNA or DNA chain.

After sequencing the humane genome in 2003, modern biology produces as many new

algorithms as any other fundamental realm of science. One of the the major challenges

in bioinformatics is genome assembly. As I explain this process, I will also explain

some basic terms in this field. Second generation of devices for genome sequencing

(i.e. sequencers) produce short reads. Therefore, the biggest challenge is how to as-

semble these short reads into a unique sequence. Process of assembling short reads to

create full-length, sometimes novel, sequences is called de novo assembly. In an ideal

case, an assembled genome should have one sequence without gaps or unknown parts.

This is not the case in practice, where an assembled genome is often represented with

hierarchical data structure which maps reads into assumptive reconstruction of targeted

genome. In this structure, reads given by sequencers are clustered into contigs, and af-

terwards, contigs into scaffolds. Contigs consist of sequence of mutually overlapped

reads. Scaffolds define contigs order, orientation and gap size between them. This is

called draft genome. [2]

Third generation of sequencers enabled production of longer reads as output. Ox-

ford Nanopore Technologies device has a great new technology for genome sequenc-

ing which enables sequences practically unlimited in length. Currently the longest

sequence was 180 000 base pairs (bp) long, contrary to Illumina, 2nd generation (≈
150 bp ) and PacBio, 3rd generation (≈ 5000 bp - 60000 bp) technologies. This is

great, because the biggest problem with Illumina sequences is that they are quite short

and genomes have repetitive parts which can be longer than that. During de novo
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assembly these parts cannot be unambiguously solved. So the output of assembly is

given as previously mentioned draft genome. Long reads do not have a problem with

repeats, but they have other significant problem - enormous error rate. For example,

PacBio reads have≈15% error rate and Oxford Nanopore reads have error rate greater

than 25% (even great as 40%). [2]

Currently there are a great number of draft genomes of multiple species/organisms

which are assembled from Illumina reads and were never finished, therefore presented

in form of sequence of contigs. Idea of this paper is to use Oxford Nanopore reads for

scaffolding and to fill the gaps between contigs. With this approach some of unfinished

genomes could be finalized.

This master thesis is a part of a collaborative project which is publicly available at

https://github.com/mculinovic/ONTscaffolder.

Chapter 2 will give a quick introduction to biological, mathematical, algorithmic

and technical background of this thesis.

Chapter 3 describes methods used to fill gaps in draft genomes. Two methods will

be explained in detail.

Chapter 4 will describe the implementation development, tests executed and the

technologies used to maintain and document code.

Chapter 5 will show results of the implementation on two datasets and three differ-

ent simulated draft genome examples.

Chapter 6 will offer final thoughts, discussion, comparison of results and potential

future work.
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2. Preliminaries

In this chapter basic knowledge required to understand the topic of this thesis will

be covered. Firstly, it will be explained how third generation Oxford Nanopore se-

quencers work and how they can achieve reads much longer than second generation

sequencers. Afterwards, alignment algorithms will be introduced and differences be-

tween local and global alignment will be clarified. As a necessary example for POA

algorithm (explanation in section 3.3), the Smith-Waterman algorithm for local align-

ment will be described. Burrows-Wheeler aligner (BWA), tool used for aligning reads

to contigs/genomes will be presented as well. Another prerequisite for understand-

ing POA algorithm is to understand what are graphs, and how algorithms (Depth-First

Search and Topological Sort) modified for graphs work.

2.1. Oxford Nanopore Technologies

Oxford Nanopore Technologies is developing nanopore-based sensing technologies

for the analysis of biological molecules like DNA or RNA. The technology is based

on protein nanopore. At the core of a protein is a nano-scaled hollow tube. Oxford

Nanopore designs and manufactures described nanopore structures for a range of ap-

plications. In nature, nanopores form holes in membranes. In Oxford Nanopore Tech-

nologies, nanopore is inserted into an highly electrically resistant membrane created

by a synthetic polymer. By applying a potential across the membrane which is bathed

in electric chemical solution, an ionic current can be generated through the nanopore.

Single molecules that enter the nanopore or pass near its aperture cause characteristic

disruptions in the current - this is known as a nanopore signal. By measuring that dis-

ruption it is possible to identify the molecule in question. For example, this system can

be used to distinguish between the four standard DNA bases G, A, T and C, and mod-

ified bases. Using microchip fabrication techniques, Oxford Nanopore has developed

devices that enable highly scalable arrays of this nanopore to be used for real-time

sensing of biological molecules. The number of nanopores used can be scaled up to
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Figure 2.1: Example of the edit distance. If value of every operation is 1, total distance

between sequences is 3
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Figure 2.2: Global alignment

industrial levels. [3]

2.2. Alignment Algorithms and Tools

Sequence alignment is often the first step in bioinformatics analysis. It can be inter-

preted as a way to transform one sequence into another. It is one of the oldest and most

explored problems in bioinformatics. First measure from the aforementioned area is

the one which explains how many operations are needed to transform one sequence

into another. This measure is called Levenshtein distance[4], also known as edit dis-

tance. We differ between three possible operations on one element:

– Insertion means inserting one element into the first sequence so that it matches

the second sequence, e.g. fih to fish

– Deletion means deleting one element from the first sequence so that it matches

the second sequence, e.g. ship to hip

– Substitution means changing one character of the first sequence to a character

on matching position in another sequence, e.g. way to say

As an addition to calculating distance between sequences (Figure 2.1), bioinfor-

maticians needed information about how alignment looks. First algorithm to solve

this problem was the one presented by Needleman and Wunsch and was based on dy-

namic programming[5]. There are two types of alignments in bioinformatics - local

and global.

Global alignments try to align every character in every sequence and are used when

sequences are similar in length (Figure 2.2).
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C T C A A

C T - A A

Figure 2.3: Local alignment example ([2]) between two sequences, s = ACCTAAGG and t =

GGCTCAATCA.

Contrary, local alignments try to align regions of similarity within sequences (Fig-

ure 2.3). Example of a local alignment algorithm also based on dynamic programming

is Smith-Waterman algorithm[6] and will be explained in detail in section 2.2.1.

In this thesis, the BWA ([7]) tool was used to align long reads to draft genome

and it will be explained in section 2.2.2. Output of this software is presented in SAM

format[8], which will be explained in detail in section 2.2.3.

2.2.1. The Smith-Waterman Algorithm

As was mentioned beforehand, the Smith-Waterman algorithm is a deterministic dy-

namic programming method for finding local alignment between sequences. When it

comes to local alignment it is much better to maximize similarity than to minimize pre-

viously mentioned distance between sequences. This similarity measure can achieve

positive and negative values, but we were interested only in positive similarity, because

negative similarity means that there is no similarity between sequences, and it can be

set to zero. So we can define two-dimensional dynamic programming similarity matrix

(S) between two sequences (s and t) as follows:

Si,j =



0 i = 0 ∨ j = 0

max



0

Si−1,j−1 + sim(si, tj)

Si−1,j + gap_cost

Si,j−1 + gap_cost

otherwise
(2.1)

In the similarity matrix (2.1) there is one function sim, and one parameter gap_cost.

Function sim calculates if characters in sequences - si and tj - are equal or not. A sit-

uation where characters are equal represents match operation and the function returns

positive value, e.g. 4. If characters are not equal, we call this situation mismatch and

the function returns negative value, e.g. −2. Parameter gap_cost represents aforemen-

tioned deletion or insertion operations, and it has negative value. We can distinguish

5



C C G A G T T A G T

0 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 2 2 0 0 2

G 0 0 0 2 0 2 0 1 1 2 0

G 0 0 0 2 1 2 1 0 0 3 1

A 0 0 0 0 4 2 1 0 2 1 2

T 0 0 0 0 2 3 4 3 1 1 3

T 0 0 0 0 0 1 5 6 4 2 3

C 0 2 2 0 0 0 3 4 5 3 1

C 0 2 4 2 0 0 1 2 3 4 2

Figure 2.4: Smith-Waterman example ([2]). Values in the matrix are similarity values and

arrows symbolize a backtracking matrix. Best alignment path is colored in yellow.

between opening gap cost and extending gap cost by penalizing gap extension less than

opening a new gap.

Within the similarity matrix we only have information about maximum similarity

between sequences. If we want to get actual alignment this information has to be stored

in another two dimensional table. This is called a backtracking matrix (2.2).

Bi,j =



start Si,j = 0 ∨ i = 0 ∨ j = 0

deletion Si,j = Si−1,j + gap_cost

insertion Si,j = Si,j−1 + gap_cost

match or mismatch otherwise

(2.2)

By using a backtracking matrix, we can reconstruct the alignment path. Recon-

struction/backtracking starts from element with maximum similarity value in similar-

ity matrix, and ends when an element with zero similarity value occurs, i.e. when value

in backtracking matrix is start.

An example of how the Smith-Waterman Algorithm calculates alignment is given

in figure 2.4. Operation values used in this example were +2 for match, −1 for

mismatch and −2 as gap_cost. Space and time complexity of the stated algorithm

(Algorithm 1) is O(mn) where m and n are lengths of sequences. The algorithm re-

turns maximum similarity value and best alignment path found.
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Algorithm 1 Smith-Waterman (sequence s, sequence t)
1: max_sim_value = 0

2: max_sim_position = (0, 0)

3: for i = 1→ |s| do
4: S[i, 0] = 0

5: B[i, 0] = start

6: end for
7: for i = 1→ |t| do
8: S[0, i] = 0

9: B[0, i] = start

10: end for
11: for i = 1→ |s| do
12: for j = 1→ |t| do
13: calculate S[i, j] as in equation 2.1

14: calculate B[i, j] as in equation 2.2

15: if S[i, j] > max_sim_value then
16: max_sim_value = S[i, j]

17: max_sim_position = (i, j)

18: end if
19: end for
20: end for
21: extract path p by backtracking matrix B starting from max_sim_position until

value of element in B is start

22: return p,max_sim_value

7



2.2.2. Burrows-Wheeler Aligner

The BWA ([7]) is a software package, freely available at https:// github.com/lh3/bwa.

In this thesis it is used to map long reads (PacBio and Oxford Nanopore) to draft

genome. This is done by using the BWA-MEM algorithm, currently the latest and

fastest algorithm in BWA package. Before being able to map reads to a genome, BWA

first needs to construct FM index for reference genome. Alignment of reads to draft

genome is performed in verbose mode - meaning that one read can be aligned to mul-

tiple places in genome. Furthermore, every command is done in parallel. Commands

used in this thesis are:

– for indexing draft_genome:

bwa index <draft_genome>

– for indexing contig in global realignment method(3.2.3):

bwa index <contig>

– for aligning ONT reads to genome:

bwamem -t $num_threads -x ont2d -Y <draft_genome> <reads>

– for aligning PacBio reads to genome:

bwamem -t $num_threads -x pacbio -Y <draft_genome> <reads>

– for global realignment method (3.2.3):

bwamem -t $num_threads -x ont2d/pacbio -Y <contig> <reads>

2.2.3. SAM Format

SAM Format is a text format for storing sequence data in a series of tab delimited

ASCII columns. SAM stands for Sequence Alignment/Map format. It consists of

optional header section which is followed by an alignment section. The alignment

section consists of alignment records which have 11 mandatory fields. These are ([9]):

1. QNAME - The query/read name.

2. FLAG - The records flag.

3. RNAME - The reference sequence name.

4. POS - 1-based position on the reference (leftmost mapping position).

5. MAPQ - The mapping quality.

6. CIGAR - The CIGAR string of the alignment.
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7. RNEXT - The reference name of the mate/next read.

8. PNEXT - The position of the mate/next read

9. TLEN - The observed length of the template.

10. SEQ - The query/read sequence.

11. QUAL - The ASCII PHRED-encoded base qualities.

These information about alignment were necessary for contig extension, especially

fields POS and CIGAR. Cigar string consists of interlaced numbers and characters

(regex \∗|([0-9]+[MIDNSHPX=])+). Possible operations in cigar string are:

– alignment match (M),

– insertion to reference (I),

– deletion from reference (D),

– skipped region from reference (N),

– soft clipping (S),

– hard clipping (H),

– padding (P),

– sequence match (=)

– or sequence mismatch (X).

Numbers before the operations give information about how many consecutive times

the operation appears at this point in alignment. Usage of this information will be

described in chapter 3.

2.3. Graphs

A graph is a set of vertices which are connected by edges. Formally, a graph G is a

tuple (V,E) where V is nonempty finite set of vertices and E is a set (possibly empty)

of edges. An edge is defined as every binomial subset of set V . We differ between

directed and undirected graphs. Undirected graphs are those in which for every edge

e1 = (u, v) there is an edge e2 = (v, u) = e1. Given an edge e1 = (u, v) in a directed

graph, the vertex u is its source, and v is its sink, and edge e2 = (v, u) = e1 does

not have to exist. The edge e = (u, v) is called outedge of vertex u and inedge of

vertex v. Path in a directed graph from vertex u to vertex v is a sequence of vertices

9



a

b

c

d

e

g

f

Figure 2.5: Directed acyclic graph. Length of a path colored in red 〈a, b, d, e, f, g〉 is 5.

〈v0, v1, · · · , vn−1〉 where v0 = u, vn−1 = v, and (vi, vi+1) ∈ E for i ∈ {0, · · · , n− 2}.
The sequence may consist of a single vertex. If there exists a path from u to v, v is

said to be reachable from u and number of edges it traverses is the length of a path.

An example of a directed graph is given in figure 2.5, and one of the possible paths is

colored in red. [10]

Computing reachable vertices (searching a graph) from other vertices is a funda-

mental operation. There are two methods for graph traversal and these are depth-first

search (DFS) and breadth-first search (BFS). Both of this algorithms have linear time

complexity, O(|V | + |E|). For POA algorithm to work, nodes in a graph need to be

topologically sorted (explained in section 2.3.2), and prerequisite for this is DFS, so I

will explain this algorithm in detail in following section.

2.3.1. Depth-First Search

The depth-first search is a graph traversal method best suited for problems where we

want to find any solution or to visit all nodes in a graph. The basic idea of the algorithm

is to visit a vertex, then push all of the neighbor vertices to the stack. We repeat this

procedure by finding next node so that we pop from stack, and then push all the nodes

connected to that one onto the stack until all nodes are visited. The algorithm also

memorizes which vertices are visited to ensure that every vertex is visited only once.

Example of the algorithm execution is given in figure (2.6), and its pseudocode in

Algorithm 2.
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a(1)

f(3)

e(4)

d(5)

b(6)

c(2)

Figure 2.6: DFS traversal example. Edges used in traversal are colored red. Vertex order in

traversal is given in brackets.

Algorithm 2 Depth-first search (vertex start)
1: set visited

2: stack s

3: s.push(start)

4: while s is not empty do
5: top = s.top()

6: s.pop()

7: if top not in visited then
8: check if this is the vertex we are searching for (or any other termination

criteria)

9: visited.insert(top)

10: add all neighbors of top to stack

11: end if
12: end while

11



a(1)

b(2)

d(3)

c(7)

f(8)

g(4)

h(5)

e(6)

Figure 2.7: Topological sort example. Edges used in traversal are colored red. Vertex order in

traversal is given in brackets.

Topological Order

c

f

a

e

b

g

h

d

Figure 2.8: Topological order of vertices in figure 2.7.
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2.3.2. Topological Sort

Topological sort or topological ordering of a directed graph is a linear ordering of

vertices such that every directed edge e = (u, v) from vertex u to vertex v, u comes

before v in ordering. Topological ordering of vertices is possible only if a graph is

directed and acyclic (DAG). Any DAG has at least one topological ordering. [11] An

example of topological ordering of a graph is given in figures 2.7 and 2.8.

One way to get a topological sort of a DAG is to run a modified depth-first search.

When we finished visiting all neighbor vertices of some vertex, we push that vertex

on the stack. We can get topological ordering of graph by popping vertices from the

stack (Algorithm 3). Time complexity of this algorithm is linear, same as in DFS -

O(|V |+ |E|).

13



Algorithm 3 Topological sort
1: function DFS(vertex start)

2: set started

3: stack s

4: s.push(start)

5: while s is not empty do
6: top = s.top()

7: s.pop()

8: if top in visited then
9: continue

10: end if
11: if top in started then
12: insert top in visited

13: order.push(top)

14: remove top from started

15: continue

16: end if
17: insert top in started

18: s.push(top)

19: add all neighbors of top to stack

20: end while
21: end function
22:

23: set visited

24: stack order

25: for vertex in vertices do
26: if vertex not in visited then
27: DFS(vertex, visited)

28: end if
29: end for

14



3. Methods

In this chapter I will explain all methods used for contig extension. Firstly, I will ex-

plain how reads which are possible extensions of contig were found (3.1). Afterwards,

I will explain how these reads were used for contig extension. Two methods were used

for contig extension - a majority vote method with modifications (3.2) and a method

using POA consensus algorithm for generating consensus sequence between possible

extensions (3.3). Common property of all methods is that every contig was extended

independently of one another. Finally, when contigs are extended they are merged into

scaffolds or if possible into a genome as a whole which is described in section 3.4.

3.1. Finding possible extensions

Prerequisite for finding possible extensions for contigs was to align Oxford Nanopore

or PacBio reads to draft genome. This was done by using the BWA as described in

chapter 2.2.2. Information about this alignment was stored in .sam file. Next, records

from .sam file were mapped to contigs in draft genome so reads aligned to specific

contig, i.e. records about read alignment, could be easily accessed.

Every record mapped to contig needs to be checked if it is a possible extension.

A record is suitable for extending contig if it is soft clipped and clipped part extends

left of contig start, or if it is soft clipped and clipped part extends right of contig start.

Additional criteria is introduced to check if alignment record, i.e. read, is feasible

for contig extension and these are inner and outer margin. Reads whose alignment

starts (left extension) or ends (right extension) within the inner margin is immediately

suitable for extension. Reads whose alignment starts or ends within the outer margin

are called dropped reads and are later used in global realignment method (3.2.3). An

example of possible extensions is given in figure 3.1.

To define the start and the end read indices of extension (which is actually sub-

string of a read), actual length of read used in alignment was calculated. Furthermore,

actual length of contig part used in alignment was calculated. The contribution to

15



A T G C G T T T A C G C C G T C A A G T

A A G T C C A

A A G T C C A C C AC A G A T G C G T T

A G A T G T A C G
inner margin

outer margin

inner margin

Figure 3.1: Sequence in white represents contig. Other sequences represent reads. Red reads

are possible extensions of contig, orange reads are dropped reads and read in green is not

suitable for contig extension.

read/sequence length is if operations in cigar string are alignment match, insertion to

reference, soft clipping, sequence mismatch, or sequence match. The contribution to

contig length is similar, but instead of insertion to reference, deletions from reference

are counted.

Pseudocode of the described method is given in Algorithm 4.

Algorithm 4 Find possible extensions (alignment_records)
1: for record in alignment_records do
2: read_name = record.qName

3: read = name_to_sequnce(read_name)

4: if record is potential left extension then
5: left_soft_clipped_len = count(record.cigar[0])

6: extension_length = left_soft_clipped_len− record.beginPos

7: if record.beginPos < inner_margin then
8: extension = read.substring(0, extensionlength)

9: reverse(extension) // we are moving from right to left in extending

10: else
11: read is dropped_read

12: end if
13: end if

3.2. Majority vote

First idea that comes to mind is to extend contigs by using possible extension reads

and extend contigs base by base. Next base added to contig is calculated by majority

vote method amongst bases aligned to that position (section 3.2.1). Variations of this

16



Finding possible extensions continued
14: if record is potential right extension then
15: used_read_size = 0

16: used_contig_size = 0

17: for element e in record.cigar do
18: if e contributes to sequence length then
19: used_read_size+ = count(e)

20: end if
21: if e contributes to contig length then
22: used_contig_size+ = count(e)

23: end if
24: right_soft_clipped_len = count(record.cigar[cigar_len− 1])

25: used_read_size− = right_soft_clipped_len

26: (margin = contig_length− (record.beginPos+used_contig_size)

27: if margin > outer_margin then
28: continue

29: end if
30: if margin > inner_margin then
31: read is dropped_read

32: else
33: extension_length = right_soft_clipped_len−margin

34: start = used_read_size + (right_soft_clipped_len −
extension_length)

35: extension = read.substring(start, extension_length)

36: end if
37: end for
38: end if
39: end for
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Figure 3.2: Example of contig extension using simple majority vote method. Possible ex-

tension reads are colored in yellow. Sequence colored in multiple colors is contig - orange

represents original contig, bases in green are extended part of contig, and base in red is dis-

carded because reads coverage is too low.

methods are local realignment of possible extension reads (section 3.2.2) and upgraded

version of mentioned method that uses bwa for global realignment of dropped reads

(section 3.2.3).

3.2.1. Simple extension

Simple extension using majority vote is pretty straightforward. Take all possible exten-

sion reads for contig, calculate next base for extension using majority vote and proceed

until number of reads (coverage) is greater than some defined value (Figure 3.2).

3.2.2. Local realignment

Variation of simple extension majority vote method is to locally realign reads which

bases at current extension position are not the same as base calculated with majority

vote. Local realignment "looks" one move ahead, and checks if one of the alignment

operations (match, mismatch, deletion, insertion) could correct read alignment to (ex-

tended) contig. "Looking ahead" is done by calculating the next base by majority vote,

but only reads with correct base at current position are considered eligible for count-

ing. Minimum coverage for the next base is determined as 0.6 * MIN_COVERAGE

(line 22 in Algorithm 5) and is subject to changes if necessary for obtaining better

results. Depending on local realignment operation do following:
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– if operation is match move one base forward in sequence,

– if operation is mismatch move one base forward in sequence,

– if operation is insertion move two bases forward in sequence,

– if operation is deletion stay at current base in sequnce,

– otherwise extension read is marked as dropped.

Pseudocode of this method which finds contig extension is given in Algorithm 5.

Every extension read memorizes for itself which is the current index for majority vote

examination (variable current_read_position in algorithm).

Algorithm 5 Majority vote with local realignment(extension_reads)
1: function COUNT_BASES(extension_reads)

2: coverage = 0

3: majority_vote_base = null

4: for read in extension_reads do
5: if read is not dropped then
6: coverage+ = 1

7: curr_base = read[current_read_position]

8: update counter of curr_base

9: update majority_vote_base if counter is new maximum

10: end if
11: end for
12: return majority_vote_base, coverage

13: end function
14: while true do
15: contig_extension = ””

16: output_base, coverage = COUNT_BASES (extension_reads)

17: if coverage < MIN_COVERAGE then
18: break
19: end if
20: next_output, next_coverage = COUNT_BASES (extension_reads) with

21: offset 1 // continued from line before

22: if next_coverage < 0.6×MIN_COVERAGE then
23: break
24: end if
25: contig_extension.push_back(output_base)
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Majority vote with local realignment continued
26: for read in extension_reads do
27: curr_base = read[current_read_position]

28: next_base = read[current_read_position+ 1]

29: if curr_base == output_base then
30: operation is a match

31: else if curr_base == next_output then
32: operation is a deletion

33: else if next_base == next_output then
34: operation is a mismatch

35: else if next_base == output_base then
36: operation is a deletion

37: else
38: drop read

39: end if
40: end for
41: end while
42: return contig_extension

20



3.2.3. Local realignment with global realignment of dropped reads

How can local realignment method work better? Answer is somehow intuitive. We can

see that in the algorithm, all reads which are possible extensions, but are not precise at

current position and cannot be locally realigned are marked as dropped reads. With that

approach loss of data (coverage) is too fast, so these reads should be globally realigned

to extended contig using bwa.

This process is iterative - in each step, after contig extension is found using local

realignment method (get_extension() function call in Algorithm 6), dropped reads are

globally realigned and new possible extensions of already extended contig are found.

If the coverage of left and right possible extensions are both below the minimum cov-

erage, contig cannot be extended anymore and process is stopped. Pseudocode of this

method is given in Algorithm 6. In the implementation other stopping criteria were

added if maximum extension length of contig is specified.

3.3. POA

Another approach was tried out for contig extension which is based on multiple se-

quence alignment. All possible extension reads were mutually aligned and consensus

sequence of alignment was taken as contig extension. The algorithm used for this was

the Partial Order Alignment algorithm ([12]) which is based on using partial order

graphs for multiple sequence alignment. After partial order multiple sequence align-

ment graph is constructed, consensus can be easily extracted as maximum weight path

in graph ([13]). These methods are described in section 3.3.1, and how they were used

for contig extension is described in section 3.3.2.

3.3.1. POA algorithm

As mentioned in chapter 2.2 we differ between local and global alignments. POA algo-

rithm is based on the Smith-Waterman algorithm for local pairwise (between only two

sequences) alignment. We know that two sequences can have different local alignment

and which one is the best depends on match / mismatch / gap scoring scheme used.

Example of this is given in figure 3.3 where different alignments of two sequences,

"CGCGAAAAGGCC" and "CGCGTTTTGGCC", are presented.

This is not a problem for pairwise alignment, but for multiple sequence alignment

these ambiguities begin to distort the eventual result. So how can we present alignment

21



Algorithm 6 Extend contig - global realignment method (contig)
1: vector left_extensions, right_extensions

2: left_extensions, right_extensions = find_possible_extensions()

3: should_ext_left = should_ext_right = true
4: while should_ext_left or should_ext_right do
5: left_extension = right_extension = ””

6: if should_ext_left then
7: left_extension = get_extension(left_extensions)

8: should_ext_left = ¬left_extension.isEmpty()

9: end if
10: if should_ext_right then
11: right_extension = get_extension(right_extensions)

12: should_ext_right = ¬right_extension.isEmpty()

13: end if
14: // construct extended contig

15: contig = left_extension+ contig + right_extension

16: if there are not any dropped reads then
17: break
18: end if
19: align dropped reads to contig using bwa

20: left_extensions, right_extensions = find_possible_extensions()

21: if left_extensions.size() < MIN_COVERAGE or
22: right_extensions.size() < MIN_COVERAGE then
23: break
24: end if
25: end while
26: return contig
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C G C G - - - - A A A A G G C C

C G C G T T T T - - - - G G C C

(a) Alignment 1.

C G C G A A A A - - - - G G C C

C G C G - - - - T T T T G G C C

(b) Alignment 2.

C G C G - A A - A A - - G G C C

C G C G T - - T - - T T G G C C

(c) Alignment 3.

C G C G - A - A - A - A G G C C

C G C G T - T - T - T - G G C C

(d) Alignment 4.

Figure 3.3: Example of different local alignments

C G C G

A A A A

G G C C

T T T T

Figure 3.4: Example of partial order alignment graph between sequences CGCGAAAAGGCC

and CGCGTTTTGGCC.

between sequences differently, and more clearly and unambiguously, additionally giv-

ing us a chance to extract all possible alignments from one view/layout? Layout struc-

ture that naturally comes to mind is graph. [14]

We can see in figure 3.4 that in partial order alignment graph one specific base

can have multiple successors (e.g. base G before the fork) or predecessors (e.g. base

G after the fork). Similarity to alignment strings is that there is a directional order of

vertices in graph, each vertex has zero or more predecessors and successors and there is

no repetition or doubling back - therefore, the graph is Directed Acyclic Graph (DAG).

[14]

Next question that arises is how to align sequence to an already constructed graph.

This actually is not very different from the Smith-Waterman algorithm described in

section 2.2.1. In classical Smith-Waterman dynamic programming matrix base has
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A A G G C

0 -6 -12 -18 -24 -30

-6 2 8 -14 -20 -20

-12 -2 -2 -10

-18 14 4 0 -12 -18

-24 -20 -16 0

-30 -26 -22 ?

C

A

T

G

T

Align G,T:

Align G,T:
Insert T: 

Graph

Insert T: 
Graph

Insert G: 
Seq

Graph

Sequence

Figure 3.5: Sequence to graph alignment example ([14]). Align move means match or mis-

match operation, vertical insertion moves are insertions from graph to sequence, and horizontal

insertion moves are insertions from sequence to graph.

only one predecessor in sequence.

In sequence to graph alignment, base can have multiple predecessors in graph so

there are more insert and align (match/mismatch) moves being considered (Figure 3.5).

Prerequisite for this alignment to work is that vertices in the graph are topologically

sorted (described in section 2.3.2), because dynamic programming methods require all

previous states scores to be calculated before calculating the current state score.

Afterwards, when the best alignment between sequence and graph is calculated

using dynamic programming method described earlier, this sequence has to be incor-

porated into a partial order graph. I will explain this on a simple example from [14].

Lets suppose that we have alignment as in in figure 3.6. When incorporating alignment

into graph, we do not want to lose information about alignment operations. We should

keep track about insertions (insert new vertex to graph), matches and mismatches (in-

troduce new type of edge, which connects bases/vertices which are aligned to each

other). So, for example in figure 3.6, we get a graph like one in figure 3.7. We can see

that exactly those vertices which represent bases that are in mismatch are connected

with dashed lines (edge).

According to [14], following steps are taken for incorporating aligned sequence to

graph, and are presented in Algorithm 7. It is important to mention that weight of an
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C G A T T A C G

| | . | | | .

C G C T T A T -

Figure 3.6: Calculated alignment between two sequences([14]). Vertical lines in second row

represent match operations, and dots represent mismatches.

C G

C

A

T T A C G

T

Figure 3.7: Incorporating sequence to graph example ([14]). Full lines are left to right di-

rected edges and dashed lines connect vertices (bases) that are aligned to each other, but are

mismatches.

edge is the number of sequences that include this edge.

Every sequence incorporated into a graph can be easily extracted because of its

starting point. Afterwards, you only need to follow the edges labeled with this se-

quence through the graph. Once the sequence is incorporated, new topological sort of

nodes is generated and another alignment can be performed. [14]

Generating a consensus sequence from a graph is actually a problem of finding

maximum weight path between two vertices in DAG, and this can be solved in O(|V |+
|E|) time, which is linear in the size of the input. Firstly, we have to topologically sort

the reverse graph, so all of the vertices are ordered in such a way that no node is

visited before all of its children are visited. This can be done by topologically sorting

the original graph, and then just reverse the vertex order. Next step is to label all the

vertices with the weight of highest-weight path starting with that vertex. This is again

a dynamic programming problem – first we set scores of all vertices to zero, and then

visit them in previously mentioned order. With all the prerequisites satisified, we have

two conditions for every vertex (scores of vertices are marked as d(v)).

– If vertex has no outgoing edges, weight of path starting at this vertex remanes

zero.

– Otherwise, for each edge e = (u, v) leaving the current vertex u, we compute

value d(v) + weight(u, v) and set d(u) to maximum of these values.
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Algorithm 7 Incorporate aligned sequence to graph
1: Create new "starting point" start for this sequence in graph

2: Set previous position prev to start

3: for each sequence base b in calculated alignment do
4: if b is not aligned to a vertex a in graph G(V,E) or
5: (if it is but neither the aligned vertex a ∈ V nor
6: any v ∈ V it is aligned to has the same base) then
7: New vertex n is created with the base b,

8: and is selected as current vertex curr

9: n is aligned to the aligned vertex a if any

10: and all of the "aligned-to" vertices are updated to align to n.

11: else
12: That vertex u ∈ V with the same base is selected as curr.

13: end if
14: if Edge e = (prev, curr) does not already exist then
15: add new edge e = (prev, curr) to G

16: end if
17: add current sequence label to e

18: prev = curr

19: end for
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Finally, we only need to memorize which vertex has maximum score and follow

edges from it to obtain maximum weight path in graph.

3.3.2. Extension using POA consensus

Using POA generated consesus to extend contigs is actually a very simple idea. Use

find possible extensions method to get possible extension reads, create substring of

defined length for each extension and pass these substrings to the POA algorithm for

generating consensus of these sequences. Afterwards, just append the consensus se-

quences for left and right extensions to contig. Pseudocode of this method is given in

Algorithm 8.

Algorithm 8 Extend contig - POA method (contig)
1: vector left_extensions, right_extensions

2: left_extensions, right_extensions = find_possible_extensions()

3: create substrings(trim extensions) of defined length from left and right extensions

4: left_extension = poa_consensus(left_extensions)

5: right_extension = poa_consensus(right_extensions)

6: contig = left_extension+ contig + right_extension

7: return contig

3.4. Scaffolding

The intuitive way to merge contigs into scaffolds is to find overlaps between them if

they exist, but this is not easily achievable because extensions have potentially high

error rate and contigs sequences are very long. Therefore, anchors were created from

contigs. Anchors are subsequences of user defined length at the start and the end of the

contig. It is necessary that the anchors do not cover only previously found extension

part of contig, but also a part of contig which precedes the extension, because it is

assumed that this part is 100% correct.

Next, those anchors are aligned using bwa to each contig. Lets suppose we have

contig 1 and contig 2 and anchor of contig 2 is aligned at the end or start of contig 1.

These two contigs are merged. This is repeated until merging is not possible anymore.

Result can be multiple scaffolds or genome as a whole.

27



4. Implementation

Two independent projects were developed in the scope of this master thesis. First one

implements Partial Order Alignment algorithm as a library which provides program-

ming interface for generating consensus, and it is publicly available at https://github.com/

mculinovic/cpppoa. Second project is a collaborative project, which implements meth-

ods for contig extension and scaffolding described in chapter 3. It is implemented as

a console application, and it is publicly available at https://github.com/mculinovic/

ONTscaffolder.

4.1. General overview

Both projects were implemented in C++ programming language and the code was

written according to Google C++ Style guide with some exceptions where those were

unavoidable. Additionally, code is documented according to Doxygen conventions, so

that documentation can be easily accessible both in pdf and html format. For automatic

compilation of both debug and release versions and Doxygen documentation genera-

tion Makefiles were written. As version control tool, git was used, and git repositories

were hosted at http://github.com. In ONTscaffolder project, scripts for preparing data

and result analysis were written in Python and for automatic testing and program ex-

ecution in bash (4.4). Both projects have detailed installation and usage instructions

written in readme files.

To download the implemented POA library, git clone the repository and type make

for compilation. After command is executed, the static library file libcpppoa.a will be

generated and public header poa.hpp will be available in the include/cpppoa directory.

To use cpppoa in your project include poa.hpp in your source code and provide it

with a library file libcpppoa.a when linking the executable file. CPPPOA source code

statistics obtained using cloc tool are presented in figure 4.1.

To install the ONTscaffolder, git clone the repository, locate yourself inside the

ONTscaffolder folder, run command git submodule update –init –recursive, and type
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Figure 4.1: CPPPOA source code statistics obtained using cloc.

Figure 4.2: ONTscaffolder source code statistics obtained using cloc.

make afterwards. Running the make command without arguments will build the re-

lease version of the tool as the binary file scaffolder in release directory. To run the

tool please use run.sh script because it will automatically delete temporary files and

folders. If you prefer doing it manually or you want to inspect files created during pro-

gram execution you can directly run scaffolder. ONTscaffolder source code statistics

obtained using cloc tool are presented in figure 4.2.

Both projects should be compatible with most UNIX flavors and have been suc-

cessfully tested on operating systems Max OS X 10.10.3. and Ubuntu 14.04 LTS.

Requirements to build and run both projects are following:

– g++(4.8.2 or higher)

– GNU Make

– Burrows-Wheeler Aligner (0.7.12 or higher) - ONTscaffolder only
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– Doxygen (optional)

4.2. External dependencies

The ONTscaffolder project depents directly on 2 libraries, one of which is cpppoa.

Other dependency is SeqAn Library ([15]), which was used for easier input and output

handling, especially reading and parsing alignments file in .sam format. Seqan is an

open source C++ library of efficient algorithms and data structures for analysis of

sequences with focus on biological data.

4.3. Code layout

The code is structured into multiple namespaces and classes. In the next sections, I

will describe what specific files are used for.

4.3.1. CPPPOA

CPPPOA code structure is organized in multiple classes (poa.cpp dependencies can be

seen in figure 4.3) as follows:

– alignment.hpp / alignment.cpp - class is used for calculating local alignment

between sequence and graph using modified Smith-Waterman algorithm.

– edge.hpp / edge.cpp - class represents directed edge in Partial Order Graph.

– node.hpp / node.cpp - class represents vertex in Partial Order Graph.

– graph.hpp / graph.cpp - Partial Order Graph implementation, provides meth-

ods for incorporating sequence alignment into graph, and extracting consensus

sequence from it.

– poa.hpp / poa.cpp - library programming interface and its implementation. Pro-

vides method for generating consensus sequence from vector of strings.

4.3.2. ONTscaffolder

ONTscaffolder code structure is organized in multiple classes and namespaces (main.cpp

dependencies can be ssen in figure 4.4) as follows:
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src/poa.cpp

vector string

./graph.hpp

./alignment.hpp

./poa.hpp

memory

unordered_set utility

./node.hpp

./edge.hpp

unordered_map

tuple deque

Figure 4.3: Public header implementation - poa.cpp - dependencies.

– bases.h / bases.cpp - namespace bases and class BasesCounter. Provides meth-

ods for calculating majority vote base and coverage at specific position in ex-

tension.

– bwa.h / bwa.cpp - namespace aligner. Provides wrapper functions for system

calls to bwa tool.

– connector.h / connector.cpp - class Connector which is used for merging contigs

into scaffolds.

– contig.h / contig.cpp - class Contig which represents contig sequence. Provides

easy access to left and right extension of contig.

– extension.h / extension.cpp - class Extension which is used for representing ex-

tension read sequence during local realignment process. Provides functionality

for positioning in sequence based on alignment operations.

– scaffold.h / scaffold.cpp - class Scaffold which consists of multiple Contigs and

memorizes contributions of each contig into scaffold sequence.

– scaffolder.h / scaffolder.cpp - namespace scaffolder which implements method

for finding possible extensions and all of the methods for contig extension.

– utility.h / utility.cpp - namespace utility; various utility functions (wrappers for

reading specific file formats, shell commands execution, exception throwing

etc.)
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src/main.cpp

seqan/sequence.h

parsero/parsero.h iostream

unordered_mapstring vector

utility

./utility.h

./bwa.h ./scaffolder.h

./contig.h

./connector.h

seqan/bam_io.h

memory

./extension.h

unordered_set

./scaffold.h

Figure 4.4: Scaffolder main program - main.cpp - dependencies.

– main.cpp - entry point and main program of project.

4.4. Scripts

Multiple scripts were implemented for various functions. Here is the list of available

scripts:

1. Python scripts (for detailed usage instructions run script with –help option)

– genome2contigs - cuts a reference genome into multiple contigs

– reverse_complement - performs the reverse complement operation over

sequences in FASTA file

– extension_analysis - runs various statistics on contig extensions pro-

duced by the scaffolder

2. Bash scripts

– run.sh - script used for running scaffolder. It will automatically detect the

number of hardware threads supported by system and delete temporary

files created

– run_tests.sh - script used for comparing results of extension methods

(POA and global realignment). It invokes extension_analysis script for

statistics.
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5. Results

5.1. Tools and methods for results evaluation

All measurements were conducted on the following hardware and software configura-

tion:

1. Hardware

– Architecture: x86_64

– Number of CPUs: 2

– Model name: Intel(R) Xeon(R) CPU E5645

– Cores per CPU: 6

– CPU GHz: 2.40

– RAM: 96GB

2. Software

– Ubuntu 14.04.2 LTS

Time measurements were performed by the tool time, which is available as a stan-

dard part of the linux shell. Testing was automated by using run_tests.sh script which

enables the execution of both global realignment and POA consensus extension meth-

ods one after another on the same input. Results analysis was done by using exten-

sion_analysis.py script which was called from run_tests.sh. Simulated draft genomes

were created from Escherichia coli full genome with usage of genome2contigs.py

script.

5.2. Data

Two datasets of reads were used for contig extension. The first one is Escherichia coli

resequencing dataset, which showcases PacBios extremely long-read, single molecule
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data with a sample of the E. coli K12 MG1655 strain. Some of the key metrics are that

mean mapped read length is 3549bp and coverage is 19.96x. This dataset can be down-

loaded from https://github.com/PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-

Resequencing. The second dataset is Bacterial whole genome read data from the Ox-

ford Nanopore Technologies MinION nanopore sequencer ([16]). Both High and Nor-

mal Quality Two-Directions (2D) reads from this dataset were used. For the simulation

the draft genomes Escherichia coli str. K-12 substr. MG1655, complete genome was

used. From this genome three different draft genomes were created:

– The first one has one gap of length 1000 starting from base 3000000, i.e. draft

genome consists of 2 contigs.

– The second one has four gaps of length 1000 starting from bases 1000000,

2000000, 3000000 and 4000000 respetively, i.e. draft genome consists of 5

contigs.

– The third one has one gap of length 5000 starting from base 3000000, i.e. draft

genome consists of 2 contigs.

For filling these gaps PacBio (section 5.3) and ONT (section 5.4) read datasets were

used. For analysis of contig extensions correctness, they were aligned to reference

genome using bwa. Tables with following columns were created from alignment files:

NAME - name of the contig extension, it consists of original contig name plus addi-

tional suffix L or R meaning left or right contig extension respectively

ID - identity of alignment - number of matches divided by (number of matches +

number of mismatches)

MTCH - number of matches

MISM - number of mismatches

I - number of insertions

D - number of deletions

I + D - number of insertions plus number of deletions

|I - D| - absolute value of number of insertions minus number of deletions

LEN - length of extension

All results are discussed in section 5.5.
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Table 5.1: Aligned extensions for dataset with one gap of length 1000bp. Original contig

names are gi|545778205|gb|U00096.3|0| and gi|545778205|gb|U00096.3|1|. Extensions are

obtained by POA consensus method on PacBio reads.

NAME ID (%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 99.90 1031 1 107 0 107 107 2028

gi|545778205|gb|U00096.3|0|L 99.62 796 2 89 1 90 88 887

gi|545778205|gb|U00096.3|0|R 99.90 976 0 100 1 101 99 1168

gi|545778205|gb|U00096.3|1|L 99.49 975 5 167 0 167 167 1660

gi|545778205|gb|U00096.3|1|L 84.02 610 85 93 31 124 62 788

gi|545778205|gb|U00096.3|1|R 99.90 1011 1 47 0 47 47 1062

Table 5.2: Aligned extensions for dataset with one gap of length 1000bp. Original contig

names are gi|545778205|gb|U00096.3|0| and gi|545778205|gb|U00096.3|1|. Extensions are

obtained by global realignment method on PacBio reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 98.74 1018 5 6 8 14 2 1029

gi|545778205|gb|U00096.3|0|R 99.39 976 2 7 4 11 3 986

gi|545778205|gb|U00096.3|1|L 98.31 349 3 2 3 5 1 355

gi|545778205|gb|U00096.3|1|R 99.60 994 3 7 1 8 6 1004

5.3. E. coli PacBio reads results

5.3.1. One gap of length 1000bp

Extending contigs using global realignment method lasted 1 minute and 56.729 sec-

onds. Results of this method are shown in table 5.2. Extending contigs using POA

consensus method lasted 1 minute and 19.839 seconds. Results of this method are

shown in table 5.1.

5.3.2. Four gaps of length 1000bp

Extending contigs using global realignment method lasted 2 minutes and 9.031 sec-

onds. Results of this method are shown in table 5.4. Extending contigs using POA

consensus method lasted 4 minutes and 17.743 seconds. Results of this method are

shown in table 5.3.
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Table 5.3: Aligned extensions for dataset with four gaps of length 1000bp.

Original contig names are gi|545778205|gb|U00096.3|0|, gi|545778205|gb|U00096.3|1|,

gi|545778205|gb|U00096.3|2| and gi|545778205|gb|U00096.3|3|. Extensions are obtained by

POA consensus method on PacBio reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 99.90 1031 1 107 0 107 107 2028

gi|545778205|gb|U00096.3|0|L 99.62 796 2 89 1 90 88 887

gi|545778205|gb|U00096.3|0|R 100.00 1022 0 113 0 113 113 1138

gi|545778205|gb|U00096.3|1|L 99.79 1443 0 322 3 325 319 1771

gi|545778205|gb|U00096.3|1|R 99.25 1060 3 104 5 109 99 1238

gi|545778205|gb|U00096.3|2|L 98.88 1062 8 110 4 114 106 1351

gi|545778205|gb|U00096.3|2|R 99.90 977 0 100 1 101 99 1169

gi|545778205|gb|U00096.3|3|L 99.49 974 5 165 0 165 165 1654

gi|545778205|gb|U00096.3|3|L 83.88 609 85 92 32 124 60 786

gi|545778205|gb|U00096.3|3|R 100.00 987 0 52 0 52 52 1111

gi|545778205|gb|U00096.3|4|L 99.11 1000 9 162 0 162 162 1352

gi|545778205|gb|U00096.3|4|L 98.55 68 0 1 1 2 0 69

gi|545778205|gb|U00096.3|4|R 99.90 1011 1 47 0 47 47 1062

Table 5.4: Aligned extensions for dataset with four gaps of length 1000bp.

Original contig names are gi|545778205|gb|U00096.3|0|, gi|545778205|gb|U00096.3|1|,

gi|545778205|gb|U00096.3|2| and gi|545778205|gb|U00096.3|3|. Extensions are obtained by

global realignment method on PacBio reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 98.74 1018 5 6 8 14 2 1029

gi|545778205|gb|U00096.3|0|R 99.50 1002 0 8 5 13 3 1010

gi|545778205|gb|U00096.3|1|L 99.25 926 3 10 4 14 6 939

gi|545778205|gb|U00096.3|1|R 100.00 1006 0 3 0 3 3 1010

gi|545778205|gb|U00096.3|2|L 99.30 995 5 6 2 8 4 1006

gi|545778205|gb|U00096.3|2|R 99.39 976 2 8 4 12 4 987

gi|545778205|gb|U00096.3|3|L 98.31 348 3 2 3 5 1 354

gi|545778205|gb|U00096.3|3|R 99.34 1048 4 8 3 11 5 1060

gi|545778205|gb|U00096.3|4|L 99.61 1012 0 10 4 14 6 1025

gi|545778205|gb|U00096.3|4|R 99.60 994 3 7 1 8 6 1004
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Table 5.5: Aligned extensions for dataset with one gap of length 5000bp. Original contig

names are gi|545778205|gb|U00096.3|0| and gi|545778205|gb|U00096.3|1|. Extensions are

obtained by POA consensus method on PacBio reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 95.24 3261 157 795 6 801 789 9378

gi|545778205|gb|U00096.3|0|L 93.57 2068 133 607 9 616 598 2808

gi|545778205|gb|U00096.3|0|L 95.19 1485 64 299 11 310 288 1848

gi|545778205|gb|U00096.3|0|L 89.53 1000 84 84 33 117 51 1168

gi|545778205|gb|U00096.3|0|R 99.33 4869 26 1089 7 1096 1082 5984

gi|545778205|gb|U00096.3|1|L 97.36 9364 224 1987 30 2017 1957 11973

gi|545778205|gb|U00096.3|1|R 99.47 3938 17 492 4 496 488 5471

gi|545778205|gb|U00096.3|1|R 87.72 736 89 184 14 198 170 1009

Table 5.6: Aligned extensions for dataset with one gap of length 5000bp. Original contig

names are gi|545778205|gb|U00096.3|0| and gi|545778205|gb|U00096.3|1|. Extensions are

obtained by global realignment method on PacBio reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|R 99.39 976 2 8 4 12 4 987

gi|545778205|gb|U00096.3|1|R 99.49 2345 8 27 4 31 23 2380

5.3.3. One gap of length 5000bp

Extending contigs using global realignment method lasted 2 minutes and 43.506 sec-

onds. Results of this method are shown in table 5.6. Extending contigs using POA

consensus method lasted 31 minutes and 27.064 seconds. Results of this method are

shown in table 5.5.

5.4. E. coli Oxford Nanopore reads results

5.4.1. One gap of length 1000bp

Extending contigs using global realignment method lasted 1 minute and 20.954 sec-

onds. Results of this method are shown in table 5.8. Extending contigs using POA

consensus method lasted 2 minutes and 5.504 seconds. Results of this method are

shown in table 5.7.
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Table 5.7: Aligned extensions for dataset with one gap of length 1000bp. Original contig

names are gi|545778205|gb|U00096.3|0| and gi|545778205|gb|U00096.3|1|. Extensions are

obtained by POA consensus method on ONT reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 96.28 1035 24 226 16 242 210 1304

gi|545778205|gb|U00096.3|0|R 98.14 1057 11 250 9 259 241 1323

gi|545778205|gb|U00096.3|1|L 94.56 1181 46 260 22 282 238 1496

gi|545778205|gb|U00096.3|1|R 95.66 1057 30 234 18 252 216 1322

Table 5.8: Aligned extensions for dataset with one gap of length 1000bp. Original contig

names are gi|545778205|gb|U00096.3|0| and gi|545778205|gb|U00096.3|1|. Extensions are

obtained by global realignment method on ONT reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 86.32 82 5 2 8 10 6 90

gi|545778205|gb|U00096.3|0|R 90.37 197 11 5 10 15 5 213

gi|545778205|gb|U00096.3|1|R 92.53 223 7 6 11 17 5 236

5.4.2. Four gaps of length 1000bp

Extending contigs using global realignment method lasted 1 minute and 56.915 sec-

onds. Results of this method are shown in table 5.10. Extending contigs using POA

consensus method lasted 3 minutes and 46.526 seconds. Results of this method are

shown in table 5.9.

5.5. Discussion

Before the result analysis, I just want to highlight the situation where one extension

is aligned multiple times to the referent genome. This is happening because of rela-

tively small size of extensions and therefore only the best (primary) alignment will be

considered in results comparison, although they are all written in result tables.

I will start by comparing results for the simplest problem - one gap of length 1000.

When looking at tables 5.1 and 5.2, the first thing which arises is that length of POA

extensions are longer than gap size. This is because of how this algorithm works -

takes sequence of specific length, but does not put boundary on consensus sequence

generated from them. Next, it can be seen that POA method has greater identity score

than global realign method, but number of insertions and deletions is greater by an
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Table 5.9: Aligned extensions for dataset with four gaps of length 1000bp.

Original contig names are gi|545778205|gb|U00096.3|0|, gi|545778205|gb|U00096.3|1|,

gi|545778205|gb|U00096.3|2| and gi|545778205|gb|U00096.3|3|. Extensions are obtained by

POA consensus method on ONT reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 96.28 1035 24 226 16 242 210 1304

gi|545778205|gb|U00096.3|0|R 93.27 1067 57 203 20 223 183 1356

gi|545778205|gb|U00096.3|1|L 95.39 1014 44 283 5 288 278 1344

gi|545778205|gb|U00096.3|1|R 97.01 1039 23 208 9 217 199 1327

gi|545778205|gb|U00096.3|2|L 97.58 1009 16 248 9 257 239 1300

gi|545778205|gb|U00096.3|2|R 97.96 1055 15 250 7 257 243 1325

gi|545778205|gb|U00096.3|3|L 94.72 1184 44 263 22 285 241 1500

gi|545778205|gb|U00096.3|3|R 95.14 1038 36 179 17 196 162 1253

gi|545778205|gb|U00096.3|4|L 91.47 1126 63 215 42 257 173 1437

gi|545778205|gb|U00096.3|4|R 95.66 1057 30 234 18 252 216 1322

Table 5.10: Aligned extensions for dataset with four gaps of length 1000bp.

Original contig names are gi|545778205|gb|U00096.3|0|, gi|545778205|gb|U00096.3|1|,

gi|545778205|gb|U00096.3|2| and gi|545778205|gb|U00096.3|3|. Extensions are obtained by

global realignment method on ONT reads.

NAME ID(%) MTCH MISM I D I + D |I - D| LEN

gi|545778205|gb|U00096.3|0|L 86.32 82 5 2 8 10 6 90

gi|545778205|gb|U00096.3|1|L 98.63 72 0 6 1 7 5 79

gi|545778205|gb|U00096.3|1|R 90.06 299 15 2 18 20 16 316

gi|545778205|gb|U00096.3|2|R 90.41 198 11 5 10 15 5 214

gi|545778205|gb|U00096.3|3|R 94.21 114 5 0 2 2 2 123

gi|545778205|gb|U00096.3|4|L 91.38 53 2 0 3 3 3 60

gi|545778205|gb|U00096.3|4|R 92.53 223 7 6 11 17 5 236
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order of magnitude. Shortage of global realign method is that it highly depends on

dataset coverage. Outcome of this problem is that some contigs cannot be extended in

length approximate to gap size, because the coverage is simply too low. From com-

paring results obtained from PacBio reads to ONT reads in tables 5.7 and 5.8, multiple

conclusions can be made. The first one is that the identity score is obviously lower

when obtained with ONT reads and this is expected because of higher error rate in

these reads. The second thing to be seen is that global realigned did not succeed in

extending contigs to gap length, because of the same reason as with PacBio reads -

low read coverage at this position in contig. This stands out here because in general

coverage of ONT reads dataset is lower than PacBio reads dataset. Similar conclusions

can be made from observing results from tables 5.3, 5.4, 5.9 and 5.10.

When observing results for problem with one gap of length 5000, it can be seen that

POA method generates a lot of alignments because of great number of insertions which

can "fix" generated extension, but a good thing is that length of extensions is scaled to

gap size as was expected from this method. Contrary, global realign method could not

extend to this length for the same reasons as before - low coverage and high error rate.

Even more so, some extensions could not even be aligned to reference genome (see

table 5.6). What is promising in this method is that number of insertions, deletions

and mismatches remains very small in comparison to POA method. Because of these

results obtained from PacBio reads, I did not run algorithms on ONT reads for this gap

size, because it is expected that because of even lower coverage method results would

be similar as in previous examples.
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6. Conclusion

Scaffolding using long error-prone reads is a very promising method for completion

of draft genomes. In this master thesis two methods were proposed for filling gaps be-

tween contigs in draft genomes. Both methods are based on extending contigs on their

left and right ends. Firstly, reads which are possible contig extensions are found. The

first method uses these reads so that it "predicts" alignment operation one move ahead

and combines this approach with global realignment of reads which were not correct at

a specific position in the extension. The second method uses possible extension reads

and creates from them a consensus sequence using the POA algorithm. After contigs

were extended, they were, if possible, merged into scaffolds or even a whole genome.

Test results are promising, especially the global realignment method. This method de-

pends highly on reads coverage and reads error-rate, but Oxford Nanopore Techonolo-

gies are showing encouraging progress in this specific area. The POA method depends

on these same things but is lacking the ending point of extension where coverage be-

comes too low, therefore many insertions and deletions appear when aligning consen-

sus sequence to reference genome.

For accomplishing better results, few methods can be tried out. For example, using

other tool instead of bwa for alignment. If this tool is more sensitive and accurate,

only correct possible extensions of contig would be found and error probability would

decrease. Next, there are lot of parameters in the implemented algorithm - some of

them are inner and outer margin, minimum coverage for extension, anchor size used

for contig merging etc. Refinement of these parameters, various testing and adjustment

of these parameters would certainly help to obtain better results. Additionally, with all

these proposals it is also possible to restart the program on extended contigs obtained

from the last program execution and repeat that process iteratively. This could solve

the problem on lowering coverage in global realignment when gaps are too long.
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Scaffolding using long error-prone reads

Abstract

Scaffolding using long error-prone reads is very promising method for completion

of draft genomes. Two methods were proposed for extending contigs in draft genomes.

First one is based on local and global realignment of possible extension reads and

second one uses POA algorithm for generating consensus sequence from these reads.

Program was tested on two different types of long reads, PacBio and Oxford Nanopore

Technologies. Project is implemented in C++ programming language.

Keywords: Scaffolding, local and global realignment, POA, PacBio, Oxford Nanopore

Popravljanje postojećih genoma koristeći dugačka očitanja s velikom greškom

Sažetak

Popravljanje postojećih genoma koristeći dugačka očitanja s velikom greškom obe-

ćavajući je pristup za popunjavanje rupa u nedovršenim genomima. Dvije metode

predložene su za produljivanje kontiga. Prva se temelji na lokalnom i globalnom po-

ravnanju očitanja koja su moguća produljenja kontiga, a druga koristi POA algoritam

za generiranje konsenzus sekvence iz tih očitanja. Rad metoda testiran je na dva ra-

zličita skupa podataka dugačkih očitanja - PacBio i Oxford Nanopore Technologies

očitanja. Projekt je implementiran u programskom jeziku C++.

Ključne riječi: Skafold, lokalno i globalno poravnanje, POA, PacBio, Oxford Nanopore
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