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1. Introduction

Owing to its architecture, an RNA molecule has the ability to fold and form three-

dimensional structures. Although structures understanding is imperative since it can

lead to skyrocketing discoveries in medicine and pharmacy, the number of known RNA

structures is still at a disappointing level due to the difficulty of determining it.

Inspired by the recent progress in solving similar problems, the RNAFold model

predicts a three-dimensional RNA structure using deep learning methods.

In favour of getting an overview and a direction in the first stages of RNAFold’s

implementation, this thesis aims to analyse different model configurations. By ob-

serving multiple performance metrics, the objective is to find patterns between model

architecture and performance, and determine which factors may improve current model

implementation.

Firstly, the problem will be thoroughly explained in the following chapter to un-

derstand the motive behind this model and its aim. Additionally, similar projects will

be referenced to explain the inspiration behind the model implementation.

The introduction will be followed by the chapter that focuses on the model inter-

pretation, model’s expected input and output, architecture, losses and modifications to

the original version that will be included to define different analysis versions.

The Implementation chapter will give a quick overview of analysis implementation,

its organisation and used hyperparameters.

Furthermore, testing results, tables and visual representations of model perfor-

mances shall be included in the Results chapter to give a detailed comparison between

the model versions based on the different observed metrics.

Observed results will be analysed and commented on in the Discussion, followed

by the Conclusion chapter.
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2. Problem

Both proteins and RNA molecules have a tendency to fold and consequently form a

three-dimensional structure. Their functions and effect on the organism vary depend-

ing on their structure. Mechanisms of RNA function, designing synthetic RNAs and

discovering RNA-targeted drugs are just one of many examples of why knowledge of

such structures is of great importance. [3]

The problem mentioned above is well known as the RNA structure prediction prob-

lem. It focuses on determining the three-dimensional shape of RNA from its nucleotide

sequence.

However, the problem is that predicting such structures has been shown to be very

challenging due to a limited number of determined structures. Therefore, computa-

tional approaches have become increasingly popular.

According to the biannual Critical Assessment of Structure Prediction (CASP) ex-

periments, deep learning methods have demonstrated significant improvement com-

pared to other more traditional methods. Among plenty of models that apply the deep

learning approach using data from the rich database of known protein structures (PDB),

AlphaFold and TrRosetta are instances of those with remarkable results.

The latest experiment CASP14 has raised the bar due to AlphaFold2’s[2] impres-

sive performance on proteins for which the experimental structures were not public

at the time. [1] AlphaFold2 outcompeted other participants of around 100 groups by

achieving accuracy competitive with experimental structures in most cases. [2]

Although there has been significant progress in recent years, the RNA structure

prediction problem still faces various challenges. In addition, RNA structure prediction

has proven to be even more arduous than predicting the structure of a protein.

Some methods that have positively impacted protein structure prediction have not

triumphed as much in the corresponding RNA problem since structure data of the re-

lated RNAs is not as available. Furthermore, even if that was not the case, sequence

coevolution information did not show too promising results when determining tertiary

contacts in RNA.[3]
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A neural network named Atomic Rotationally Equivariant Scorer (ARES) tackles

previously mentioned obstacles by using many processing layers and recycling out-

puts to learn effectively with a modest dataset. Given a model specified by each atom’s

3D coordinates and chemical element type, ARES predicts the structural model’s root

mean square deviation (RMSD) from the unknown true structure. Based on the cor-

responding article - Geometric deep learning of RNA structure - ARES continuously

outperformed the competition by identifying accurate structural models compared with

other scoring functions (Rosetta, Ribonucleic Acids Statistical Potential (RASP) and

3dRNAscore).[3]

The RNAFold model, on which this thesis focuses, aims to utilize the aforemen-

tioned protein prediction techniques on the corresponding RNA folding problem. The

idea behind the implementation is to learn from the best approaches in predicting pro-

tein structures and apply the most promising practices to predict RNA 3D structures.

Since AlphaFold2 showcased outstanding CASP performance, the model implementa-

tion is mainly based on the AlphaFold2.

Given RNA as nucleotide sequence and aligned sequences of homologues as in-

puts, the RNAFold predicts the three-dimensional coordinates of all heavy atoms. The

network consists of two distinct components - Evoformer and Structure module. While

Evoformer illustrates the first structure sketch, Structure module provides explicit 3D

structure.

Since the model’s implementation is still in progress and consumes a considerable

amount of time and memory, the idea is to explore whether other model configurations

achieve similar, if not better, results with less time and memory.

The main focus will be on the Evoformer network block that exchanges information

between the Multiple Sequence Alignment (MSA) and pair representations to provide

relevant spatial and evolutionary relationship information. It consists of both attention-

based and non-attention-based components.

Instead of using very complex attention layers, various combinations of convo-

lutional layers will be tested since they have a history of performing well in related

problems and require less trainable parameters.

3



3. Model

The RNAFold model tackles the problem of predicting the three-dimensional structure

of RNA based on its nucleotide sequence.

The model’s architecture is complex and consists of several components. On the

input, the network expects RNA data in the form of MSA features and pair repre-

sentations. Said features are preprocessed before the model forwards input data to

the aforementioned Evoformer block. Once prepared, the Evoformer block applies

multiple operations to mix information between the pair and MSA representations for

structure generation within the Structure module. The Structure module’s output and

thus the RNAFold model’s output produces a three-dimensional structure in the form

of a rotation and translation for each atom of the nucleotide.

In pursuance of higher accuracy, iterative refinement is applied all over the network

by repeatedly reusing the outputs as inputs into the same models and including the final

loss in outputs.

Each network’s components will be explained in detail in the following sections.

3.1. Feature preprocessing

A single model input is implemented as a tensor dictionary, where every dictionary has

components listed in Table 3.1. Corresponding constants are defined in Table 3.2.

During the training and validation phases, samples are chosen randomly within

training and validation sets. On the other hand, during testing, they are referenced by

index.

Since not all input sequences have the same length, a random crop is applied to

every sample. In other words, instead of using the entire sequence length, only a

random sequence window is observed. Starting position is uniformly sampled from

[0, n−Nc + 1], where n is a sequence length and Nc is a fixed crop size.

Feature preprocessing module also expects recycled outputs on the input according

to the refinement that the network constantly applies. Therefore, recycled MSA and

4



pair features are added to the input value.

Figure 3.1 illustrates feature preprocessing flow. While unsqueeze refers to

adding one additional dimension, R stands for applying recycled outputs.

relpos operation is defined through Algorithm 1, and its purpose is to provide

information about the positions of nucleobases in the chain. The algorithm calculates

relative distance within a chain, encodes it as a one-hot vector and performs linear

projection.

Input features enter the preprocessing stage in order to provide final input represen-

tation by embedding input values. Consequently, both MSA features and pair features

have embeddings instead of one-hot encoding representation.

Table 3.1: Input Details

Feature Dimension Definition

Input Features

sequence Nc ×Nb

a nucleobase sequence tensor where

every nucleobase is encoded as a

one-hot encoding vector

index

sequence
Nc

a tensor containing range

{0, 1, ..., Nc − 1}

MSA features Nal ×Nc ×Nt

a tensor containing MSA informa-

tion: nucleobases of aligned se-

quences where every nucleobase is

encoded as one-hot encoding vector

and deletions vector

pairing

probabilities
Nc ×Nc

pairing probabilities between every

two positions in a sequence

Target Features

atom

coordinates
Nc ×Nat × 3

a tensor containing three-

dimensional coordinates for

every atom of nucleotide

atom

coordinates

mask

Nc

a tensor mask indicating whether

three-dimensional coordinates are

defined for a corresponding posi-

tion in a sequence

prediction

features
Nc ×Np

a tensor containing values for every

prediction feature for every corre-

sponding position in a sequence
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Table 3.2: Constants

constant description

Nc

crop size, i.e. number of sequence positions included in the

crop window

Nb

number of differentiating nucleobases; size of a vector

encoding single position in a nucleobase sequence

Nal number of alignments observed in a MSA feature

Nt size of a vector encoding single position in a MSA feature

Np number of prediction features

Ne embedding size

Figure 3.1: Feature preprocessing

Algorithm 1 Relative position encoding

1: function RELPOS(f, vbins = [−32,−31, ..., 32]) . f ∈ N
Nc

0

2: d ← outer sub(f, f) . d ∈ Z
Nc×Nc

3: b ← arg min(|d − vbins|) . b ∈ N
Nc×Nc

0

4: out ← Linear(one_hot(b)) . out ∈ R
Nc×Nc×Ne

5: return out

6: end function
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3.2. Evoformer

Figure 3.2: Evoformer v1

The Evoformer module consists of multiple blocks with shared architecture but no

shared weights.

Besides the fact that different combinations of attention and dropout layers are

applied on the Evoformer input, there is continuous communication between the MSA

and pair representation through an outer product.

Since this prediction problem can be interpreted as a graph prediction problem with

sequence positions presenting nodes and pair representation illustrating the informa-

tion about the edges, the triangle inequality on the edges must be satisfied. Conse-

quently, the Evoformer stack includes both attention and non-attention based triangle

updates.

3.2.1. MSA row-wise gated self-attention with pair bias

The operation illustrated in Figure 3.3 updates a row in MSA feature by exchanging

information between elements that belong to the same target alignment. Both MSA

and pair representations are provided as inputs.

For the sake of obtaining attention weights, processed queries and keys are multi-

plied, and projected pair representation is included as bias.

Queries, keys, values and gate values are calculated by grouping projected MSA

input into heads.
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Figure 3.3: MSA row-wise gated self-attention

3.2.2. MSA column-wise gated self-attention

Figure 3.4: MSA column-wise gated self-attention

Communication between elements that belong to the same target nucleotide updates a

column in the MSA feature, as shown in Figure 3.4.

Since only MSA is expected on input, there is no additional bias when calculating

attention weights.
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3.2.3. Transition

Figure 3.5: MSA transition

Transition layer is present both in MSA and pair stack, as demonstrated in Figure

3.5. It includes two linear projections and one activation using Rectified Linear Unit

(ReLU).

3.2.4. Outer product mean

Figure 3.6: Outer product mean

Figure 3.6 demonstrates Outer product mean where MSA feature performs outer prod-

uct by itself. It is followed by averaging values by alignments and finishes with linear

projection to update pair representation.

3.2.5. Triangular update

By interpreting every position in a sequence as a graph node and a pairing probability

as graph edge, this operation updates the edges of a graph based on the information

from the other two edges from every possible triangle.
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The model differentiates two symmetric versions of this update, with the only dif-

ference being whether edges are interpreted as incoming or outgoing edges. For in-

stance, when updating edge ij using the outgoing edges version, edges ik and jk will

be observed from ijk triangle. On the other hand, edges ki and kj will be considered

when using the incoming edges version.

The process flow is shown in Figure 3.7.

Figure 3.7: Triangular update using outgoing/incoming edges

3.2.6. Triangular self-attention

Figure 3.8: Triangular self-attention around starting node

Transformation illustrated in Figure 3.8 also updates pair representation by interpreting

the prediction problem as a graph prediction problem.
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Depending on whether starting or ending node is observed, different graph edges

are taken into account.

Edge ij is updated based on the information obtained from all other edges with the

same starting node i. Analogously, in case of triangular attention with an ending node,

edge ij is modified using edges ending with the same node j.

3.3. Structure module

Figure 3.9: Structure module

The Structure module receives pair representation and a single MSA representation

corresponding to the original sequence.

In contrast to Evoformer, the Structure module uses multiple blocks both with

shared architecture and shared weights.

Firstly, frames are initialised and delegated to Invariant Point Attention Module

(IPA) input along with single MSA and pair representation to update MSA representa-

tion.

Term frame is used within the model to illustrate affine transformation for every

position in a sequence, i.e. translation and rotation. A single translation is defined as

a three-dimensional vector representing translations for every dimension - x, y and z,

while rotation is determined through a 3× 3 rotation matrix.

Once IPA output is calculated, multiple operations are applied to update MSA.

Such MSA is used for predicting torsion angles and relative rotations and translations,

i.e. relative frames.
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Finally, backbone frames are updated by applying composition between current

and relative backbone frames.

3.4. Losses

A total loss that the network aims to minimize constitutes of the following components:

1. distance loss: calculates the cross-entropy loss of predicting a distance bin

2. mask loss: calculates the cross-entropy loss of predicting a mask

3. total frame-aligned point error (FAPE) loss: compares predicted atom posi-

tions to actual positions

4. auxiliary losses: losses by every structure module iteration

(a) FAPE loss

(b) torsions loss: measures the difference between predicted torsion angles to

true torsion angles

(c) sugar puckering loss: calculates the mean squared error of predicting

sugar puckering

3.5. Analysis modifications

Training such a powerful but complex network requires exceptional computer power,

and even with such resources, single training takes a tremendous amount of time.

Due to the fact that this analysis’ focus is the possibility of Evoformer’s improve-

ment, the initial version has been slightly modified. Namely, there is no need for the

Structure module because other network components do not affect the metrics of inter-

est. Consequently, the total loss that the optimisation process aims to minimise consists

of distance loss and mask loss.

In addition, the goal is to compare different Evoformer configurations using simi-

lar, if not the same, hyperparameters. Therefore, there is no need for hyperparameter

values that add to the model’s complexity and training time.

In the continuation of this chapter, all tested versions will be described and illus-

trated. Novelties shall be marked red to demonstrate which modifications have been

introduced compared to the original configuration.
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v1

Firstly, the original Evoformer configuration will be tested for a starting point. No

modifications are introduced in this version. Used Evoformer architecture is illustrated

in Figure 3.2.

v2

Evoformer’s second version, shown in Figure 3.10, introduces a convolutional layer

instead of the MSA column gated attention layer.

Figure 3.10: Evoformer v2

v3

Figure 3.11: Evoformer v3
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Figure 3.11 demonstrates the Evoformer version that uses two convolutional lay-

ers instead of the MSA column gated attention layer and the triangular starting node

attention layer.

v4

The convolutional layer replacing the triangular starting node attention layer is present

in the Evoformer’s fourth version, as shown in Figure 3.12.

Figure 3.12: Evoformer v4

v5

Figure 3.13: Evoformer v5

Usage of convolutional layer instead of the MSA column gated attention layer,
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triangular starting node attention layer and triangular ending node attention layer is

illustrated in Figure 3.13.

v6

Figure 3.14 corresponds to Evoformer’s sixth version, where both the triangular start-

ing node attention layer and the triangular ending node attention layer are substituted

with the convolutional layer.

Figure 3.14: Evoformer v6

v7

The MSA column gated attention layer and the triangular ending node attention layer

are replaced with a convolutional layer in the Evoformer’s seventh version, as demon-

strated in Figure 3.15.

v8

The eighth version, shown in Figure 3.16, is characterised by substituting the triangular

ending node attention layer with a convolutional layer.

v9

RoseTTAFold’s[1] Pair2MSA layer is included in the ninth Evoformer version to re-

place the MSA row gated attention layer, as presented in Figure 3.17.
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Figure 3.15: Evoformer v7

Figure 3.16: Evoformer v8

v10

A combination of the Pair2MSA layer substituting the MSA row gated attention layer

and a convolutional layer replacing the MSA column gated attention layer specifies the

tenth version shown in Figure 3.18.

v11

Figure 3.19 illustrates Evoformer’s eleventh version. Again, the Pair2MSA layer sub-

stitutes the MSA row gated attention layer, while convolutional layers replace the MSA

column gated attention layer and the triangular starting node attention layer.
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Figure 3.17: Evoformer v9

Figure 3.18: Evoformer v10

v12

The MSA row gated attention layer is replaced with the Pair2MSA layer and the tri-

angular starting node attention layer with a convolutional layer in this Evoformer’s

version, as illustrated in Figure 3.20.

v13

Evoformer’s 13th version, as shown in Figure 3.21, introduces a convolutional layer

instead of the MSA column gated attention layer, triangular starting node attention

layer, triangular ending node attention layer, and the Pair2MSA instead of the MSA

row gated attention layer.
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Figure 3.19: Evoformer v11

Figure 3.20: Evoformer v12

v14

Usage of convolutional layers instead of the triangular starting node attention layer and

the triangular ending node attention layer, and the Pair2MSA layer instead of the MSA

row gated attention layer is present in Evoformer’s 14th version, as demonstrated in

Figure 3.22.

v15

Evoformer’s 15th version, as in Figure 3.23, is specific for replacing the MSA column

gated attention layer and the triangular ending node attention layer with a convolutional

layer, and the MSA row gated attention layer with the Pair2MSA layer.

18



Figure 3.21: Evoformer v13

Figure 3.22: Evoformer v14

v16

Finally, Figure 3.24 demonstrates the final analysis version in which the Pair2MSA

layer substitutes the MSA row gated attention layer and a convolutional layer replaces

the triangular ending node attention layer.

3.5.1. Pair2MSA

Bearing in mind that the goal is to replace all attention-based layers with convolutional

layers, the problem arises with the MSA row gated attention layer due to the fact that

it expects both pair and MSA representations on input.

Instead of introducing even more complexity by answering how to combine these

two inputs into one, RoseTTAFold’s layer Pair2MSA will be included in the analysis

19



Figure 3.23: Evoformer v15

Figure 3.24: Evoformer v16

to replace the MSA row gated attention.

Pair2MSA’s flow is demonstrated in Figure 3.25. As with the MSA row gated

attention layer, it updates MSA representation using pair and MSA representations.

Operator symmetrize calculates the outer sum of pair representation and then

divides it by two to average it. The process is followed by Direct attention layer and

Feed forward layer.

20



Figure 3.25: RoseTTAFold’s Pair2MSA layer
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4. Implementation

The RNAFold is entirely implemented using Python programming language in addi-

tion to numerous Python libraries, with the most important being:

– PyTorch - used for building a deep learning network and working with tensors

– PyTorch-Lightning - used for a more scientific approach when working

with deep learning models

– Matplotlib - used for plotting distograms

Because the model’s implementation is still in progress, the code implementation

required for this analysis is in the forked GitHub repository with the following address

https://github.com/jelena54321/RNAFold. That way, the forked model

can easily be updated with the newest version from the upstream branch and modified

without fear of interfering. On the other hand, the original model’s address is https:

//github.com/RJPenic/RNAFold.

All used Evoformer versions are placed in the RNAFold/rnafold/layers/

evoformer-versions folder. In addition, the code implementation for the Pair2MSA

layer can be found in the RNAFold/rnafold/layers/attentions.py file.

A Python script named RNAFold/rnafold/visualizations/distograms_

plotting.py was used and modified to plot distograms and show training results.

The most important used hyperparameters are listed in Table 4.1. Others were not

modified and can be found on the previously mentioned GitHub repository.

Table 4.1: Hyperparameters

name description value

msa_embedding_dim MSA features embedding size 128

pair_embedding_dim pair features embedding size 128

num_btypes
size of a vector representing a

single position in input sequence
7
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num_msa_tokens
size of a vector representing a

single position in alignment
8

heads heads size 8

evoformer_blocks number of Evoformer blocks 4

num_ensemble number of iterary refinements 1

bins_high_val_start upper boundary of the first bin 7

num_bins number of bins 16

bin_size bin size 3

mask_prob masking probability 0.04

rand_swap_prob
probability of a masked token

being masked with special token
0.15

spcl_tkn_prob

probability of a masked token

being replaced with a random

base

0.7

batch_size batch size 16

max_epochs
maximal number of epochs

during training
20

gradient_clip_val
the value at which to clip

gradients
0.1

accelerator trainer accelerator type ddp

lr learning rate 0.001

TRAIN_CROP_SIZE random crop window size 32

MODEL_NR_MSA_ALIGNMENTS
number of alignments in MSA

feature
16

mid_projection_dim hidden layer size 32

conv1_channels

number of input and output

channels in the first

convolutional layer

17
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conv2_channels

number of input and output

channels in the second

convolutional layer

32

conv_kernel size of a convolution kernel (5,13)

conv_padding convolutional layer padding (2, 6)
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5. Results

For a fair model version comparison, all versions have been trained using the same hy-

perparameter values. The following metrics were observed for the analysis to provide

information concerning the model’s performance and the expense of required resources

for training:

– training time

– memory necessary for storing trainable parameters

– distance loss

– distance accuracy

Among data that Evoformer outputs, the point of interest is the pair distance dis-

tribution. Instead of predicting the exact distance between every pair (i, j), the model

predicts the distance bin that the pair belongs to. The number and size of distance bins

are predefined and are equal to num_bins and bin_size, respectively.

As previously mentioned, the distance loss is calculated as a cross-entropy loss be-

tween the pair distance distribution and the target bins. On the other hand, the distance

accuracy informs how many pairs are mapped to an accurate distance bin, given that

the predicted bin is the one with the highest probability.

Table 5.1 refers to the time it required every model version to finish all epochs of

training. According to the results, the original version has the shortest, and the third

version has the longest training time. Bolded values indicate the edge cases. In other

words, the shortest and the longest training times.

To demonstrate memory usage by model version, Table 5.2 indicates the exact

number of parameters stored in memory during model execution and the total esti-

mated parameters size in MB. Interestingly, the model’s fifth version keeps the small-

est number of parameters, and the ninth version has the biggest number and equals

14.4 MB.
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Table 5.1: Training times

version training time [s]

v1 4 575

v2 5 147

v3 6 693

v4 5 232

v5 6 209

v6 5 747

v7 5 690

v8 5 215

v9 4 631

v10 5 210

v11 5 775

v12 5 300

v13 6 283

v14 5 815

v15 5 762

v16 5 284

Table 5.2: Parameters

version
total number of

parameters [M]

total estimated

parameters size [MB]

v1 3.3 13.053

v2 3.0 12.035

v3 2.9 11.765

v4 3.2 12.783

v5 2.9 11.495

v6 3.1 12.513

v7 2.9 11.765

v8 3.2 12.783

v9 3.6 14.378

v10 3.3 13.360

v11 3.3 13.090

v12 3.5 14.109

v13 3.2 12.820

v14 3.5 13.839

v15 3.3 13.090

v16 3.5 14.109
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5.1. Test dataset results

For the sake of getting a general overview of the model’s performance, distance loss

and distance accuracy were calculated on the test dataset of 27 RNA examples.

Table 5.3 lists distance loss and distance accuracy for every model version. The

most significant loss and the poorest accuracy score correspond to model v6. That is,

to the model in which the convolutional layers replace triangular self-attention layers.

Interestingly enough, model v2 has demonstrated remarkable performance due to

the lowest distance loss and one of the highest accuracy scores. Moreover, the model

with the highest distance accuracy is also the one that, like model v2, substitutes the

MSA column gated attention with the convolutional layer.

Table 5.3: Test results for test dataset

version distance loss distance accuracy

v1 2.02918 0.31735

v2 1.93663 0.36039

v3 2.23006 0.33977

v4 2.36739 0.31706

v5 2.36208 0.31771

v6 2.44934 0.29210

v7 2.20778 0.34021

v8 2.13482 0.34339

v9 2.04905 0.32436

v10 2.03223 0.36661

v11 2.11000 0.35576

v12 2.30562 0.30664

v13 2.38193 0.31916

v14 2.36760 0.30042

v15 2.14414 0.35315

v16 2.28534 0.32791

The two following sections will cover models performances on two RNA examples:

6TB7_1#16-48 and 6POM_2#0-32. The idea is to show one example (6TB7_1#16-48)

that should be easier for the model to predict and the other (6POM_2#0-32) expected

to result in weaker predictions.

5.2. Results for RNA example 6TB7_1#16-48

Table 5.4 shows a list of distance losses and accuracies for RNA 6TB7_1#16-48 ex-

ample by model versions. Even before taking a more detailed look at Table 5.4, it is
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immediately visible that obtained results are far better than those in Table 5.3.

Consistent with Table 5.3, model v6 again performed the poorest with both the

most significant loss and the lowest accuracy. However, the model that performed the

best due to the lowest distance loss and highest accuracy is model v16.

Table 5.4: Test results for RNA example 6TB7_1#16-48

version distance loss distance accuracy

v1 1.77925 0.37109

v2 1.45128 0.48828

v3 1.78845 0.40234

v4 1.80632 0.36523

v5 1.73819 0.38281

v6 1.93929 0.35156

v7 1.71086 0.38867

v8 1.60905 0.44922

v9 1.56121 0.48242

v10 1.47216 0.47656

v11 1.53960 0.46875

v12 1.47882 0.48242

v13 1.68781 0.42578

v14 1.87696 0.38672

v15 1.54877 0.44531

v16 1.40275 0.51367

To provide a visual representation of distance accuracies by models, so-called dis-

tograms will be used. Distogram is a plot illustrating a Nc × Nc matrix where every

pixel (x, y) shows the model’s bin prediction for a pair of positions x and y. A single

pixel indicates to which distance bin belongs the distance of y from x according to

the model’s distance distribution. The closest pairs are shown in lighter colours, while

darker tones present the farthest pairs.

Distograms for RNA example 6TB7_1#16-48 are illustrated in Figure 5.1. A target

distogram is presented with Figure 5.1a, while models outputs are shown in other 16

distograms.

In accordance with distance accuracy values from Table 5.4, models v1, v4 and v6

show the weakest performance and are able to predict well only near the main diagonal.

Similarly, models v2, v12 and v16 show indications of good performance.
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(a) Target

(b) v1 (c) v2 (d) v3 (e) v4

(f) v5 (g) v6 (h) v7 (i) v8

(j) v9 (k) v10 (l) v11 (m) v12

(n) v13 (o) v14 (p) v15 (q) v16

Figure 5.1: Target and prediction distograms by model versions for RNA example with ID

6TB7_1#16-48
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5.3. Results for RNA example 6POM_2#0-32

Test results for the RNA example are recorded in Table 5.5.

Compared to the previous RNA example, models performances are not as consis-

tent, and consequently, the worst loss and accuracy values do not belong to the same

models. In addition, results are weaker due to the more complex nature of the target

distogram.

Although all models performed relatively poorly, model v13 has the highest accu-

racy. What is more, model v6 surprisingly ended with the smallest loss value.

Based on the prediction distogram of model v16, one cannot be surprised that the

same model has the highest loss and one of the lowest accuracy scores.

Table 5.5: Test results for RNA example 6POM_2#0-32

version distance loss distance accuracy

v1 1.95733 0.32617

v2 2.10344 0.32031

v3 1.98009 0.36133

v4 2.10383 0.32813

v5 2.10186 0.32227

v6 1.89568 0.34961

v7 1.98326 0.33789

v8 2.06508 0.34180

v9 1.90857 0.33398

v10 1.97941 0.35742

v11 1.93878 0.36914

v12 1.99913 0.32227

v13 1.95204 0.37891

v14 2.00158 0.30664

v15 2.00041 0.37109

v16 2.10572 0.30859
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(a) Target

(b) v1 (c) v2 (d) v3 (e) v4

(f) v5 (g) v6 (h) v7 (i) v8

(j) v9 (k) v10 (l) v11 (m) v12

(n) v13 (o) v14 (p) v15 (q) v16

Figure 5.2: Target and prediction distograms by model versions for RNA example with ID

6POM_2#0-32
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6. Discussion

Bearing the results of the test dataset in mind, several observations concerning Evo-

former configurations can be made.

Figure 6.1: Versions sorted by distance loss

Firstly, it is interesting to notice that the smallest loss does not correspond to the

original version but rather the one where the MSA column gated attention layer is

replaced with a convolutional layer.

In addition, if one looks at the architecture of the best five models according to the

distance loss, a particular pattern can be noticed. All of those versions - v2, v1, v10,

v9 and v11 - have the triangular ending node attention layer. That is, it is not replaced

with a convolutional layer. What is more, four out of five have the triangular starting

node attention layer.

Now focusing on the distance accuracy, it is worth mentioning that all five models

with the worst distance accuracy - v6, v14, v12, v4 and v1 - have the MSA column

gated attention, i.e. the substitution of the MSA column gated attention layer with

convolutional layer is not present. On the other hand, four out of five best models have

a convolutional layer in that position.
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Figure 6.2: Versions sorted by distance accuracy

Figure 6.3: Versions sorted by training time

When comparing models based on training time, one can remark that the shortest

training times belong to the models with a smaller number of substitutions compared

to the original model. Analogously, versions with the longest training time - v11, v14,

v5, v13 and v3 - have two or more replacements.

Figure 6.4: Versions sorted by memory usage

Model versions v5, v1, v3, v7 and v2, which have the smallest memory usage, all

have one thing in common - there is no RoseTTAFold’s Pair2MSA layer. Furthermore,

out of five models, four have a convolutional layer instead of the MSA column gated
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layer. Likewise, the models with the most stored parameters have a Pair2MSA replac-

ing the MSA row gated attention layer, while the majority has the MSA column gated

attention layer.

As expected, similar patterns can be noticed when comparing results on the test

dataset to the results for RNA example 6TB7_1#16-48. Models v2 and v10 show

promising results in both cases with one of the lowest distance losses. Additionally,

models v6, v14 and v13 score in the bottom three.

Models v2 and v10 share the same Evoformer architecture, with the only exception

being the presence of the Pair2MSA layer. On the other hand, all three models, v6,

v14 and v13, have convolutional layers instead of triangular self-attention layers.

When comparing the first eight and last eight versions in Figure 5.1, one can notice

that the first half performs weaklier farther from the main diagonal and has relatively

smaller accuracy.

Although all models performed poorly with RNA example 6POM_2#0-32, the

models with the best accuracy, v13, v15 and v11, have Pair2MSA layer and a con-

volutional layer replacing the MSA column gated attention layer.

Since this RNA example is far more complex than the previous one, there are fewer

shared patterns between results for this example and the whole test dataset.
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7. Conclusion

To begin with, it is evident that all configurations that include the replacement of the

triangular ending node attention layer and the triangular starting node attention layer

with convolutional layers have one of the worst performances based on the distance

loss metric.

Furthermore, examples of promising candidates to replace the original version v1

would be models v2 and v10 due to their high distance accuracy and low distance loss.

In addition, both of them are one of the models with the shortest training time.

Another conclusion worth mentioning would be that number of substitutions is

somewhat proportional to training time. That is, three or four modifications would

immediately implicate a longer training process.

Even though using the Pair2MSA layer instead of the MSA row gated attention

layer has resulted in the distograms most similar to the target distograms, its application

uses a noticeably larger amount of memory.

Some models have achieved more success than others when comparing their dis-

tograms to the target distograms, but all of them still have too sharp transitions and

weaker performances near the edges.

RNA example 6TB7_1#16-48 demonstrated how models perform generally, but

RNA example 6POM_2#0-32 was considerably more complex, and consequently, even

the most promising versions fell short.

Distograms have shown to be an excellent visualisation for distance accuracy.

Therefore, their usage in this kind of problem is a great model performance indica-

tor and a key to solving performance issues.

Although this analysis has given some significant deductions in the model be-

haviour, there are still ways this exploration and model performance could be improved

in the future.

For instance, new Evoformer versions could be easily introduced by including an-

other replacement that isn’t a convolutional layer, such as another RoseTTAFold’s

layer. One could also observe performances in batches where every batch is defined
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with a new hyperparameter combination. Furthermore, using more powerful compu-

tational resources would implicate a more complex and faster environment and make

this analysis even better.

All in all, this analysis has shown to be very beneficial to understand the model

behaviour better and discover that there actually may be less complex versions with

better performance overall.
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Evaluation of RNA Atom Distance Prediction Models

Abstract

RNA molecules can fold and form connections with themselves. Since such trans-

formations lead to various possible three-dimensional structures and a diversity of cor-

responding functions, the knowledge of such structures is of great importance.

The RNAFold model predicts a three-dimensional RNA structure using deep learn-

ing methods and practices that have shown remarkable progress in related problems.

This thesis aims to analyse different model configurations to get an overview and a

direction in the first stages of RNAFold’s implementation. By observing multiple per-

formance metrics, the objective is to find a correlation between model architecture and

performance and determine which factors may improve current model implementation.

Keywords: RNA,folding,model,deep-learning,analysis

Vrednovanje modela za predikciju udaljenosti izmed̄u RNA atoma

Sažetak

RNA molekule mogu se savijati i uspostavljati veze same sa sobom. S obzirom

na to da takve transformacije kao posljedicu daju bogati spektar trodimenzionalnih

struktura i funkcija, znanje o takvim strukturama od velike je važnosti.

RNAFold model daje predikciju o trodimenzionalnoj strukturi koristeći metode

dubokih neuronskih mreža i prakse koje su pokazale izvanredan napredak u srodnim

problemima.

Ovaj diplomski rad nastoji analizirati različite konfiguracije modela kako bi se do-

bio pregled i smjer u prvim fazama implementacije modela. Promatrajući više metrika

performanse, cilj je pronaći povezanosti izmed̄u arhitekture i performanse modela kako

bi se ustanovili faktori koji bi mogli unaprijediti trenutnu implementaciju.

Ključne riječi: RNA,savijanje,model,duboko-učenje,analiza


