
SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

MASTER THESIS No. 1570

Scaffolding Assembled Genomes
with Long Reads

Ivan Krpelnik

Zagreb, lipanj 2018.

i

ii

iii

CONTENTS

1. Introduction 1

2. Scaffolding problem 2

3. Extension 4
3.1. Extension labeling . 4

3.1.1. Extensions preprocessing . 7

3.1.2. Circular contigs . 7

3.2. Extension assembly . 9

3.2.1. Partial order alignment . 10

3.2.2. Extension assembly using spoa 10

3.2.3. Appending extensions . 13

4. Bridging 15
4.1. Contig chains . 18

4.2. Chains consuming . 21

5. Implementation 23
5.1. Overview . 23

5.2. External dependencies . 23

5.2.1. Bioparser . 23

5.2.2. SPOA . 23

5.3. Code structure . 24

6. Results 26
6.1. Artificial gaps . 26

6.2. Pacbio bacterial datasets . 30

7. Conclusion 34

iv

List of Figures 35

List of Tables 36

Bibliography 37

v

1. Introduction

New sequencing methods are developed that greatly reduce the cost. The cost of the

first sequencing and assembling of human genome, also known as the Human Genome

Project, was up to 3 billion USD (7). Today, the cost dropped to just a few thousand

USD. The drop in price allows more researches to build tools needed for sequence

analysis and assemblies.

Next generation sequencing methods are high throughput methods that produce

high short and accurate reads (8). Assembling these reads without the reference se-

quence, using de novo methods can lead to fragmented assemblies. Fragments will

most likely have good quality, but because the reads are short, some regions might be

impossible to assemble. For example, repeat regions that are longer than the reads

would cause problems and fragmentation and there are tools being developed that help

resolving these issues (1). Long reads assembling have these problems as well. False

overlaps might cause fragmentation, since in the case when the assembler could as-

semble two different assemblies that it deems equal in quality, the assembler might

stop connecting reads there as it has no way of telling which reads to choose next.

This thesis offers methods to bridge fragmented genomes with long reads. Frag-

ments are extended using partial order alignment to create high quality extensions.

When a read spans over two different fragments, those fragments are bridged into one

fragment. The assemblies are made by the new fast de novo assemblers Miniasm (6)

and Rala (9).

The overview of the chapters in this thesis is given below.

Chapter 2 introduces the problem of fragmented assemblies.

Chapter 3 describes the extension methods for the assembled fragments.

Chapter 4 describes the bridging method which assembles chained fragments.

Chapter 5 gives an overview of the implemented solution.

Chapter 6 shows the results of the implementation on artificial fragments of e. coli

genome and real fragments produced by Rala assembler.

Chapter 7 gives a conclusion of this thesis.

1

2. Scaffolding problem

De novo assembly tools often cannot assembly the whole genome depending on its

complexity. The data produced by this generation sequencing is prone to high error

rates, so the resulting assemblies might bi fragmented due to false overlaps. Another

problem which is present in resulting assemblies is unbridged repeats - fragments (con-

tigs) in the resulting assembly are often cut off at repeat regions.

An example of a fragmented assembly produced by Rala (?) is shown on the

figure 2.1. The dotplot is created using the tool GEPARD (3).

Figure 2.1: Rala assembly aligned to reference genome

2

The reference genome positions are on the abscissa and the assembly has its posi-

tions on the ordinate. It’s evident that the assembly is fragmented compared to the ref-

erence and some of the produced contigs are in reverse complemented. Lines that are

parallel to the main diagonal represent contigs which are on the same strand, meaning

that the region on the abscissa and the region on the ordinate are aligned on the same

strand. Lines that are perpendicular to the main diagonal represent contigs that are

aligned with opposite strands - on the above figure, most of the contigs are in reverse

complement of the reference sequence.

This paper offers a partial solution to the problem of fragmented assembly. There

are two main ideas to solving the presented issue. The first is to bridge adjacent contigs

using long reads that span over the missing region. For the regions that cannot be

bridged yet, contigs are extended using reads that are mapped onto their suffix and

prefix. This process is meant to be iterative, so the next iteration will try to bridge or

extended the contigs from last iteration. The methods are described in greater detail in

the following chapters.

3

3. Extension

The extension method aims to make current contigs longer by appending a con-

sensus sequence of reads that are mapped to the contig’s ends. Circular contigs and

inner contigs in a chain of contigs are not extended. Recognition of circular contigs is

described in the next section. Inner contigs in a chain are bridged by a single read that

spans over the region between adjacent contigs. The quality of the bridged area will

later be improved using racon.

3.1. Extension labeling

To find reads that extend assembled contigs, reads are first mapped using minimap

onto contigs. Each read mapping made by minimap is labeled as a suffix, prefix or

invalid extension. Extension of a contig is described with the following structure.

E x t e n s i o n {

Ex tens ionType eType ,

s t r i n g strReadName ,

s t r i n g s t rTa rge tName ,

u long ulReadBegin ,

u long ulReadEnd ,

u long ulReadLength ,

u long u l T a r g e t B e g i n ,

u long u lTa rge tEnd ,

S t r andType e S t r a n d ,

u long u l T a r g e t D e l t a

}

Listing 3.1: Extension structure

4

Part of the structure shown in 3.1 overlaps with the paf format produced by min-

imap and all of the members are populated from the paf line representing the exten-

sion. First of, strReadName, strTargetName, ulReadBegin, ulReadEnd, ulReadLength,

ulTargetBegin, ulTargetEnd and eStrand are copied directly from the paf line for which

this extension is made. Target and read positions represent the regions that are over-

lapping between the target sequence (contig) and the read. Extension type eType is

determined based on these positions, sequence’s length and the mapping strand and

can be one of the following SUFFIX, PREFIX, CONTAINED or INVALID. When the

type is determined as SUFFIX or PREFIX, the delta position to the closer ending on

the target is cached in ulTargetDelta.

The following figure 3.1 shows an example of an extension that would be labeled

as INVALID. The regions on the read that are not part of the overlap would not extend

the contig as they are too short and the read’s overhangs are almost the same length as

the overlap. This read would be marked as CONTAINED if the overhangs were smaller

compared to the overlap.

Figure 3.1: Invalid extension

Let’s examine the other two types SUFFIX and PREFIX. Figures 3.2 and 3.3 show

suffix and prefix extensions respectively. As it is seen on the figures, the reads would

definitely extend the assembled contig. However, this condition alone is not enough to

not label the extension as INVALID. If the overlapping area is not big enough compared

to overhangs, than these extensions would also be labeled as INVALID.

5

Figure 3.2: Suffix extension

Figure 3.3: Prefix extension

A heuristic is made to discard some overlaps based on the ratio between overlap

length and overhang length. Let’s label the length of the read region shown in green

color as extensionLength, the lengths of the overhangs readOverhangLength and con-

tigOverhangLength and the lengths of the overlaps readOverlapLength and contigOv-

erlapLength.

First, a maximums between overhang lengths and overlap lengths are determined.

maxOverhang = max(readOverhangLength, contigOverhangLength)

maxOverlap = max(readOverlapLength, contigOverlapLength)

Then, there are a two conditions that must be met for the extension to be valid. As

mentioned, the read should extend the contig which translates to following expresion,

extensionLength > contigOverhangLength. The other condition to be satisfied is

a heuristic to discard overlaps that are not meaningful, i.e. the overlap is too small

6

compared to overhangs.

maxOverhang

maxOverlaps
< Threshold (3.1)

The threshold used in the current implementation is 0.125.

3.1.1. Extensions preprocessing

Before building the actual extensions, for each contig 2 sets of extensions are built

- PREFIX and SUFFIX sets. To ensure better quality extensions and reduce false

positive rate, any read that was marked as CONTAINED will be removed.

Algorithm 1 shows how the extensions are filtered. First, a set of contained reads

names is built and then, for each extension, we can check if the extension read was

contained somewhere else.

Algorithm 1: Contained reads filtering
Input: Extensions

Output: FilteredExtensions

F ilter ← {}
foreach ext ∈ Extensions do

if ext.GetType() == CONTAINED then
Filter ← Filter ∪ {ext.GetReadName()}

end

end
FilteredExtensions← {}
foreach ext ∈ Extensions do

if ext.GetReadName() /∈ Filter then
FilteredExtensions← FilteredExtensions ∪ ext

end

end
return FilteredExtensions

3.1.2. Circular contigs

Some dna sequences are known to be circular, examples include plasmids and bac-

terial chromosomes on which the implementation is tested (2). The simple method to

recognize circular contigs used in this paper relies on the fact that the same read should

7

map to both ends of the contig and it should be possible to make a bridge between the

two ends. Figure 3.4 shows an example of a circular sequence and 3 different regions

on which the sequence is broken and then straightened. All 3 straightened sequences

essentially represent the same sequence.

Figure 3.4: Circular sequence

There are two sets for each contig - suffix extension reads and prefix extension

reads. What this check essentially does is an intersection of these two. If the inter-

section is not an empty set, the contig is circular. Chapter 4 explains this in greater

detail.

Figure 3.5 shows an example of an assembled circular sequence. In the figure, it

can be seen that a region at the beginning of the assembled sequence maps to the end

region of the reference sequence. Since the prefix and the suffix of the reference can

be bridged, this is a valid assembly.

8

Figure 3.5: Circular sequence assembly

3.2. Extension assembly

For each contig and contig’s end that is not bridged to another, an extension is built

if there are valid extension reads on that end. The extension sequence is built using

spoa which is an implementation of partial order alignment. All the reads that are

mapped on the end for extension are aligned into the POA graph. The extension is

then appended or prepended to the contig.

9

3.2.1. Partial order alignment

The problem of extension assembly can be solved as multiple sequence alignment

and then generating a consensus sequence of the alignment (4). Two sequences of

length L can be optimally aligned using dynamic programming in O(L2) and the algo-

rithm can be extended for N sequences, having the time complexity of O(LN). While

doing the alignment in O(L2) is acceptable for smaller sequences, the exponential

time for larger number of sequences would not be practical. This problem can be

solved more efficiently using partial order graphs, although there is no guarantee that

the algorithm will find the optimal alignment.

The implementation used in this paper is SIMD POA spoa available at https:

//github.com/rvaser/spoa. Spoa offers multiple alignment modes - local

(Smith-Waterman), global (Needleman-Wunsch) and semi-global of which local align-

ment is used here.

3.2.2. Extension assembly using spoa

Extensions are assembled using spoa as shown by algorithm 2. The extension is

assembled from reads and a part of the contig. First, a maximum delta is found in the

extensions and then the contig is cut off so only the part on which the reads are mapped

is left together with the overhang. Since the order in which sequences are put in the

POA graph matters, first sequence that is put in is the contig for which the extension is

made as sort of a bias. The extensions are sorted by the overlap position on the contig

sequence, so the reads that are aligned deeper on the contig come first. For each read,

the overhang part is cut off and the rest is aligned with the graph. Finally, when the

consensus is generated, it gets truncated depending on the coverage.

10

https://github.com/rvaser/spoa
https://github.com/rvaser/spoa

Algorithm 2: Extension using spoa
Input: Extensions, IdToRead, strContigSeq, ExtensionType

Output: ulDelta, strConsensus

engine← spoaCreateAlignmentEngine()

graph← spoaCreateGraph()

alignment← engine.align(strExt, graph)

graph.addAlignment(alignment, strExt)

ulDelta← GetMaxDelta(Extensions)

if ExtensionType == SUFFIX then
strContigSeq ← strContigSeq.substr(0, len(strContigSeq)− ulDelta)

end
else

strContigSeq ← strContigSeq.substr(ulDelta, len(strContigSeq))

end
alignment← engine.align(strExt, graph)

graph.addAlignment(alignment, strExt)

foreach ext ∈ Extensions do
ulBegin← ext.GetBeginPos()

ulEnd← ext.GetEndPos()

seqRead← IdToRead.find(ext.GetReadName())

strExt← seqRead.GetData().substr(ulBegin, ulEnd)

if ext.IsReverseComplement() then
strExt← ReverseComplement(strExt)

end
alignment← engine.align(strExt, graph)

graph.addAlignment(alignment, strExt)

end
strConsensus, coverage← graph.generateConsensus(coverage)

TruncateConsensus(strConsensus, coverage, len(Extensions) + 1)

return ulDelta, strConsensus

11

Figure 3.6: Dot plot representation of extension coverage produced by spoa

Figure 3.6 shows an example of a coverage graph for a generated extension on a

suffix using spoa. When generating a consensus sequence, spoa returns a vector that

holds coverage of each base in the consensus sequence. Figure 3.6 shows a dot plot

representation of this vector. As this is an extension on a suffix of a contig, this con-

sensus sequence would be appended to the contig, meaning that the beginning of the

consensus sequence overlaps with the contig. Because of this, the beginning is consid-

ered to be accurate and the coverage of this part doesn’t matter as much because the

suffix of the contig is aligned in that region and the contig is considered accurate. The

ending region of the extension isn’t covered by contig’s suffix, so when the coverage

drops towards the end, the ending region of the generated sequence will not have high

quality. Because of this, the ending should be cut off. This is shown in algorithm 3

which uses half maximum coverage as a threshold. So, when the coverage drops below

the threshold, the rest of the extension is cut off.

The same applies for an extension generated on a prefix with only difference being

that the extension has to be cut off somewhere at the beginning. This is because the

prefix extension is prepended to the contig, meaning that the end of the extension

overlaps with the prefix of the contig.

12

Algorithm 3: Extension consensus truncating
Input: strConsensus, coverage, ulMaxCoverage

Output: strConsensus

Threshold← ulMaxCoverage/2

ulPos← len(coverage)− 1

while coverage[ulPos] < Threshold do
ulPos← ulPos− 1

end
return strConsensus.substr(0, ulPos)

3.2.3. Appending extensions

The extension produced by algorithm 2 is prepended or appended to the contig.

Extension is done after bridging, since the strategy for bridging is greedy - as soon as

it’s possible to bridge 2 contigs, it is done so. Reads could be mapped again to the

newly assembled contig and then the contigs could be extended using the extensions

made from the new mapping data. Instead of repeating the mapping process, it is

possible to use the old mapping data.

Positions of extensions on the original contigs are not necessarily the same on

the assembled contig, but the delta from the contig’s end, for which the extension is

made, stays the same. This is because the contig ends used for extension are not used

when bridging and they remain unchanged ends of marginal contigs. When extending a

contig assembled by bridging we are effectively extending its marginal contigs. Before

calling the extension method for the marginal contig, the unused end of the marginal

contig should be determined - this is the extension type, either PREFIX or SUFFIX.

As shown in the figure 3.7, the extension is built as a consensus sequence from the

read overlap regions and read extensions regions.

13

Figure 3.7: Extension appending

Depending on how the assembled contigs were bridged, some adjustments to the

generated extension should be done. Marginal contigs might be bridged as reverse

complements which means the generated extension should also be in reverse comple-

ment since the extension is generated relative to the contig in its original strand.

14

4. Bridging

Bridging is done between contigs that share extension reads. When the extension

sets share the same reads and certain conditions are made, a bridge can be assembled

between the two contigs. It is also possible that the extension sets of the same contig

share reads in which case the contig is declared as circular.

For the two contigs for which the intersection of their extensions sets is not an

empty set, it is possible to build a bridge if a read can be placed between the two

contigs in the same strand with one of its ends being overlapped with the first contig

and the other end with the second contig. This is shown on the figure 4.1. The reads

orientation is denoted with the arrow and its two ends with letters A and B.

Figure 4.1: Bridge read

The two contigs are bridged with the read so that the regions where the read is

mapped are cut off and the read is placed in between. The same is shown on a real

15

example on figures 4.2 and 4.3. Figure 4.2 shows 2 contigs which are not bridged with

their ends barely overlapping compared to the reference sequence. The same region is

shown again on figure 4.3, but this time the two contigs are bridged by a read into a

single contig.

Depending on the read quality, the bridged region might not have more errors than

the resto of the contig sequence. This issue can be resolved by polishing.

Figure 4.2: Unbridged contigs

16

Figure 4.3: Bridged contigs

17

4.1. Contig chains

A graph is built where contigs are nodes and edges are bridges between contigs.

For each two contigs, there is an edge if there is an intersection between their extension

sets. Chains of contigs are then extracted from the graph for contigs to be bridged.

Let extA be an extension made on contig A and extB be an extension of the same

read on contig B. Based on two extension properties eType and eStrand, it can be

determined if the read can be used as a bridge. One of the following two conditions

must be satisfied.

1. extA.eType 6= extB.eType ∧ extA.eStrand = extb.eType

2. extA.eType = extB.eType ∧ extA.eStrand 6= extb.eType

This can be seen in the figure 4.4. In the picture, contig A is extended on its suffix.

Contig B can be bridged onto contig A only if B is extended on its prefix by the read in

original strand or on it’s suffix in reverse complement.

Figure 4.4: Bridge cases

18

Let’s define the bridge graph by describing the edges more precisely. An edge is

defined by the two contigs, extension types for both contigs and bridge extension set

and it only exists if the aforementioned conditions are satisfied. Bridge extension set is

the intersection of the extension sets of the two contigs for which the bridge is made.

The read, from the bridge extension set, which will be used for bridging is taken at

random.

Figure 4.5 shows an example of a bridge graph. For each contig there is a node

with 2 exits, one for bridges on SUFFIX and one for bridges on PREFIX. Each edge

is labeled with a number which denotes how many reads can bridge the two contigs.

Contig5 doesn’t have any bridges to other contigs, so it would not be bridged, but

rather extended on both sides if there are reads that map into its extensions. The graph

also shows an example in which two contigs are bridged on the same prefix of Contig1.

The goal is to create chains of contigs which will be bridged sequentially. Some of the

edges will have to be cut, so that there is at most one bridge on some prefix or suffix.

Figure 4.5: Bridge graph

To create chains, algorithm 4 is used. A greedy approach is used to select the

edges for final chains. First, all the edges are sorted in descending order by the size of

the bridge extension set - the number of reads that bridge the region. Edges are then

selected greedily, each edge that connects two contigs on ends that were not used yet

is selected in the final list of edges.

19

Algorithm 4: Edges selection
Input: Edges

Output: SelectedEdges

sort(edges)

SelectedEdges← []

Used← {}
foreach edge ∈ Edges do

if (edge.ctg1, edge.type1) /∈ Used ∧ (edge.ctg2, edge.type2) /∈ Used then
Used← Used ∪ {(edge.ctg1, edge.type1), (edge.ctg2, edge.type2)}
SelectedEdges.append(edge)

end

end
return SelectedEdges

The selected chains for the graph shown in figure 4.5 is shown by figure 4.6. The

edge between contig2 and contig1 was cut off, since its weight is lower than the edge

between contig3 and contig1. The figure also shows a possible configuration in which

the chains could be assembled. Here contig3 and contig4 are bridged onto contig1

in reverse complement. In the extension step, the newly assembled contig will be

extended on contig3 suffix and contig4 prefix. Contig2 and contig5 will be extended

on both ends.

Figure 4.6: Chains graph

20

4.2. Chains consuming

Starting on a random node, the contig should be bridged along the chain on both its

prefix and suffix. To simplify bridging, contigs that start the chains could be found and

then the bridging process would go one way, depending on which end of the contig is

the chain attached. Doing this, bridging would be simplified since contigs and bridge

reads would always be appended to the last contig and there would be no need for

prepending. But, finding the start of the chain would require some preprocessing before

the chains are bridged. The chain might also be circular in which case, again a random

contig would have to be selected.

The key observation here is that extending on contig’s prefix is actually extending

on contig’s suffix in reverse complement. This is shown on figure 4.7. In the figure,

contigs that are on the right would be appended to the contigs on their left. To use

the one sided algorithm for bridging on both sides, it is enough to make a reverse

complement of a contig before calling it for the other side.

Figure 4.7: Bridging on a random contig

Algorithm 5 shows how the contigs in a chain are bridged by appending. When

bridging on prefix, this method input should be reverse complement of the current

contig. It can be seen that each read used as a bridge is appended, as well as the

next contig in the chain. Contigs are cut off using CutOff method which removes

ulTargetDelta (distance between the end of the contig and the overlap starting position)

bases from the end at which the contig is bridged. CalculateBridge will cut off the

bridging read so it can be inserted between the two contigs without overhangs. Finally,

before appending the next contig, if the next contig is bridged on its suffix with the

current contig, then the contig should be in reverse complement.

21

Algorithm 5: Chaining
Input: Edges, currStrand, currContig

Output: chain
chain = currContig.GetData()

while HasNextEdge(edges, currStrand, currContig) do
edge← GetNextEdge(edges, currStrand, currContig)

bridgeRead← edge.GetBridgeRead()

currExt← FindExtension(currContig, bridgeRead)

CutOff(result, currExt.eType, currExt.ulTargetDelta)

if currExt.eStrand 6= currStrand then
ReverseComplement(bridgeRead)

end
nextContig ← edge.GetNextContig()

nextExt← FindExtension(nextContig, bridgeRead)

bridge← CalculateBridge(currExt, nextExt, bridgeRead)

chain.append(bridge)

CutOff(nextContig, nextExt.eType, nextExt.ulTargetDelta)

if nextExt.eType == SUFFIX then
ReverseComplement(nextContig)

currStrand← −
end
else

currStrand← +

end
chain.append(nextContig.GetData())

currContig ← nextContig

end
return chain

22

5. Implementation

This chapter gives an overview of this thesis’ implementation. It explains the ex-

ternal dependencies, the code structure and gives instructions on how to clone and use

the project.

5.1. Overview

The project is written in C++ under the C++14 standard. The algorithms are imple-

mented in the ezra namespace as a possible extension for Ra - rapid assembler available

on https://github.com/rvaser/ra.

The project is available at https://gitlab.com/Krpa/ezra.

5.2. External dependencies

External dependencies are under vendor/ directory and will be downloaded auto-

matically if --recursive flag is passed when cloning the repository.

5.2.1. Bioparser

Bioparser is a C++ implementation of parsers for formats FASTA, FASTQ, MHAP,

PAF and SAM. Bioparser is written by Robert Vaser and it is available on https://

github.com/rvaser/bioparser. The program developed in this thesis needs

to read FASTA or FASTQ files which store contigs and reads and PAF file which

contains mapping data.

5.2.2. SPOA

SPOA is a C++ SIMD (Single instruction, multiple data) (10) implementation of

the partial order alignment algorithm described in (4) and (5) written by Robert Vaser.

23

https://github.com/rvaser/ra
https://gitlab.com/Krpa/ezra
https://github.com/rvaser/bioparser
https://github.com/rvaser/bioparser

The project is available on https://github.com/rvaser/spoa. It supports

multiple alignment modes local (Smith-Waterman), global (Needleman-Wunsch) and

semi-global alignment (overlap) of which local alignment is used in this thesis when

generating extensions.

5.3. Code structure

To use the developed library, the header file Bridger.h should be included. Figure

5.1 shows the dependency tree. Each component is described below:

– Bridger.cpp / Bridger.h - wrapper around the implemented algorithms. It holds

the data about reads, contigs and mappings read from provided files and it offers

methods to execute the implemented algorithms.

– Graph.cpp / Graph.h - contains the graph edge definition and implementation

of graph algorithms as described in chapters 3 and 4.

– Parser.cpp / Parser.h - wrapper around Bioparser, does some preprocessing to

exclude contained reads from the extension sets.

– Extension.cpp / Extension.h - wrapper around the extensions. This is used when

reading PAF mapping data with Bioparser. Extension is created for each line

in the PAF file with the appropriate extension type. Extensions are filtered in

the preprocessing phase and later used by graph algorithms.

– Sequence.cpp / Sequence.h - wrapper around sequence data, used when reading

FASTA/FASTQ files with Bioparser.

– Types.h - contains declaration of maps that are used to store sequences and

extensions.

24

https://github.com/rvaser/spoa

Figure 5.1: Dependency graph

25

6. Results

Ezra was tested on multiple bacterial datasets. First, few artificial datasets were

created by cutting the e. coli reference genome to get the fragmented assembly. These

fragments are easily connected since the fragments don’t have errors. The second

dataset consists of multiple Pacific Biosciences next generation sequencing bacterial

datasets for which some of the reference sequences are known and some are not. The

source of all PacBio datasets is Sanger institute https://www.sanger.ac.uk/.

6.1. Artificial gaps

The gaps are generated by randomly cutting the reference genome of Escherichia

Coli. The Python script which does the cutting, creates random length gaps in a pro-

vided interval. Some of the generated contigs then reversed and complemented.

Number of reads Median read length Average read length

25483 9341 9755

Table 6.1: Reads statistics

Figure 6.1 shows an example where the reference genome was cut into 21 contig

of which some are in reverse complement. The figure shows how these contigs align

to the reference genome.

26

https://www.sanger.ac.uk/

Figure 6.1: 21 contigs

Figure 6.2 shows all the contigs bridged together. Bridging was done in one itera-

tion, since the gaps between contigs were small enough that they could be bridged by

a single read. Reads statistics are shown by table 6.1. The gaps between the contigs

are between 3000 and 6000 bases, while the average read length is a lot bigger.

27

Figure 6.2: Bridged contigs

Finally figure 6.3 shows a gap closed by a read. The region has lower quality, since

it is closed by one read without generating a consensus from all of the reads that span

over. This bridge can be further improved by polishing.

28

Figure 6.3: Bridged region

Previous figures are an example of a dataset that tested the bridging algorithm.

Extensions were tested in a similar manner. Datasets which had gaps longer than reads

were generated. Such dataset would then be consumed by Ezra and the generated

extension were checked against the gaps. After enough iterations, gaps would become

small enough to bridge them.

29

6.2. Pacbio bacterial datasets

Table 6.2 shows how Ezra reduced the number of contigs outputed by Rala. In most

cases, the number of contigs was reduced. All of the datasets for which the reference

genome was present were checked by aligning the contigs to the reference genome. In

all of the cases contigs bridged by Ezra were true positives. The last column shows

whether a reference genome was present for a certain dataset, + denoting presence of

a reference genome.

As shown by the table 6.2, most of the datasets needed only one iteration to connect

the contigs. This means that bridges were formed without extensions in most cases.

For one of the datasets, NCTC10183, ezra produced one contig and although the

assembled sequence wasn’t compared to a reference genome, interestingly the assem-

bled sequence was circular and was aligned to assembly generated by miniasm.

Another interesting case was dataset NCTC8251. The contigs assembled by rala

were overlapping. But the ends of the contigs had too many errors. After cutting off

the ends, contigs were connected after two ezra iterations. This leads to an interesting

idea for an upgrade to the tool where ends of contigs could be cut off based on their

quality - for example, if there aren’t any extensions mapping there.

Dataset Rala contigs Ezra contigs Reference present Iterations

NCTC11801 7 3 + 1

NCTC13482 4 3 + 1

NCTC8531 3 3 + 1

NCTC13277 3 1 + 1

NCTC8251 4 2 + 1

NCTC2611 7 3 + 2

NCTC11951 6 2 + 1

NCTC12860 6 4 + 1

NCTC10183 3 1 - 1

NCTC11180 4 3 - 1

NCTC11995 3 2 + 2

NCTC10696 9 4 - 1

NCTC7944 2 1 + 1

NCTC13769 2 1 - 1

Table 6.2: Contigs statistics

30

Table 6.3 shows lengths of longest contigs for each dataset that had a reference

genome. This shows that even though some datasets had multiple contigs assembled,

for some, the longest contig would cover the whole or most of the reference genome.

Dataset Rala Ezra Reference

NCTC11801 1572304 4712531 4538470

NCTC13482 1863978 2286880 2172484

NCTC8531 2352906 2353897 2810675

NCTC13277 1889553 3092960 2821361

NCTC8251 1572304 2304818 2199877

NCTC2611 1866888 5672131 6296436

NCTC11951 724431 1124249 1641481

NCTC12860 1102801 1102801 2341328

NCTC11995 1286594 2184421 2271840

NCTC7944 1521734 2773590 2675240

Table 6.3: Max contig lengths

Assemblies are often cut around repeat regions. Figure 6.4 shows an example of

an unbridged repeat region which was then successfully bridged by Ezra as shown in

figure 6.5. The dataset in this example is NCTC7944.

31

Figure 6.4: Unbridged repeat region

32

Figure 6.5: Bridged repeat region

33

7. Conclusion

The tool that was created in this thesis aims to connect fragmented genomes pro-

duced by de novo assemblers. As shown in the results chapter, developed methods

were proved to be able to do that. Not all of the fragments were successfully con-

nected to cover the whole reference genome, but these methods bring us a step closer

to producing whole assemblies.

It is shown that gap regions can be bridged with long reads when they span over the

region. The extension method also proved to be useful when the gaps were too big to

be bridged in which case the tool ran for multiple iterations. Using spoa the extension

methods built high quality extensions.

Some interesting ideas to explore include cutting off the ends of fragments and

then generating extensions to create better quality ends. This is shown on one of the

datasets which after cutting was bridged successfully.

34

LIST OF FIGURES

2.1. Rala assembly aligned to reference genome 2

3.1. Invalid extension . 5

3.2. Suffix extension . 6

3.3. Prefix extension . 6

3.4. Circular sequence . 8

3.5. Circular sequence assembly . 9

3.6. Dot plot representation of extension coverage produced by spoa . . . 12

3.7. Extension appending . 14

4.1. Bridge read . 15

4.2. Unbridged contigs . 16

4.3. Bridged contigs . 17

4.4. Bridge cases . 18

4.5. Bridge graph . 19

4.6. Chains graph . 20

4.7. Bridging on a random contig . 21

5.1. Dependency graph . 25

6.1. 21 contigs . 27

6.2. Bridged contigs . 28

6.3. Bridged region . 29

6.4. Unbridged repeat region . 32

6.5. Bridged repeat region . 33

35

LIST OF TABLES

6.1. Reads statistics . 26

6.2. Contigs statistics . 30

6.3. Max contig lengths . 31

36

BIBLIOGRAPHY

[1] Pavel A Pevzner, Paul A Pevzner, Haixu Tang, i Glenn Tesler. De novo repeat

classification and fragment assembly. 14:1786–96, 10 2004.

[2] Samuel Karlin, Luciano Brocchieri, Allan Campbell, Martha Cyert, i Jan Mrázek.

Genomic and proteomic comparisons between bacterial and archaeal genomes

and related comparisons with the yeast and fly genomes. Proceedings of the

National Academy of Sciences, 102(20):7309–7314, 2005. ISSN 0027-8424.

doi: 10.1073/pnas.0502314102. URL http://www.pnas.org/content/

102/20/7309.

[3] Jan Krumsiek, Roland Arnold, i Thomas Rattei. Gepard: a rapid and sensitive

tool for creating dotplots on genome scale. Bioinformatics, 23(8):1026–1028,

2007. doi: 10.1093/bioinformatics/btm039. URL http://dx.doi.org/

10.1093/bioinformatics/btm039.

[4] Christopher Lee. Generating consensus sequences from partial order multiple

sequence alignment graphs. 19:999–1008, 06 2003.

[5] Christopher Lee, Catherine Grasso, i Mark F Sharlow. Multiple sequence align-

ment using partial order graphs. 18:452–64, 04 2002.

[6] Heng Li. Miniasm. https://github.com/lh3/miniasm.

[7] NHGRI. The cost of sequencing a human genome. https://www.genome.

gov/sequencingcosts/.

[8] Ji Hanlee Shendure Jay. Next-generation dna sequencing. Nat Biotech, 26, 2008.

[9] Robert Vaser. rala. https://github.com/rvaser/rala.

[10] Wikipedia. Simd. https://en.wikipedia.org/wiki/SIMD.

37

http://www.pnas.org/content/102/20/7309
http://www.pnas.org/content/102/20/7309
http://dx.doi.org/10.1093/bioinformatics/btm039
http://dx.doi.org/10.1093/bioinformatics/btm039
https://github.com/lh3/miniasm
https://www.genome.gov/sequencingcosts/
https://www.genome.gov/sequencingcosts/
https://github.com/rvaser/rala
https://en.wikipedia.org/wiki/SIMD

Scaffolding Assembled Genomes with Long Reads

Abstract

In this thesis, a tool for contig extension and gap closing was implemented in C++.

The tool is named Ezra and could be used for extension and bridging by de novo

assembler Rala. The extension and bridging methods are meant to be run in iterations,

repeating the process while it produces valid extensions and bridges.

The tool was tested on artificial fragments made by randomly cutting e. coli

genome and on fragmented assembly produced by Rala on Pacbio bacterial datasets.

The results show that this method is valid for reducing the number of contigs produced

by Rala. The source code is available at https://gitlab.com/Krpa/ezra.

Keywords: Scaffolding, Assembly, Assemblies, Genome, Long reads

Popunjavanje rupa sastavljenih genoma pomoću dugačkih očitanja

Sažetak

U ovom radu implementiran je alat za produljivanje i povezivanje sastavljenih sli-

jedova u programskom jeziku C++. Alat je nazvan Ezra i potencijalno bi se mogao

koristiti za produljivanje i povezivanje u alatu za de novo sastavljanje Rala. Metode

produljivanja i povezivanja bi se trebale izvršavati iterativno, ponavljajući proces sve

dok ima valjanih produljenja i povezivanja.

Alat je testiran na umjetno generiranim slijedovima napravljenih nasumičnim rezan-

jem genoma e. coli i na rascjepanim slijedovima sastavljenim alatom Rala nad Pacbio

bakterijskim podatkovnim skupovima. Rezultati testiranja pokazuju da je ova metoda

valjana za povezivanje slijedova sastavljenih Ralom. Izvorni kod dostupan je na https:

//gitlab.com/Krpa/ezra.

Ključne riječi: Povezivanje fragmenata, Sastavljanje genoma, Genom, Dugačka oči-

tanja

https://gitlab.com/Krpa/ezra
https://gitlab.com/Krpa/ezra
https://gitlab.com/Krpa/ezra

	Introduction
	Scaffolding problem
	Extension
	Extension labeling
	Extensions preprocessing
	Circular contigs

	Extension assembly
	Partial order alignment
	Extension assembly using spoa
	Appending extensions

	Bridging
	Contig chains
	Chains consuming

	Implementation
	Overview
	External dependencies
	Bioparser
	SPOA

	Code structure

	Results
	Artificial gaps
	Pacbio bacterial datasets

	Conclusion
	List of Figures
	List of Tables
	Bibliography

