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1. Introduction

A network is a set of items with connections between them. The Internet, the World

Wide Web, social networks like genealogical trees, networks of friends or co-workers,

biological networks like epidemiological networks, networks of citations between pa-

pers, distribution systems like postal delivery routes: they all take a form of networks.

Most social, biological and technological networks have specific structural properties.

Such networks are referred to as complex networks. Two well-known and much studied

classes of complex networks are scale-free networks and small-world networks whose

discovery and definition are canonical case-studies in the field. Both are characterized

by specific structural features like power-law degree distributions for the former and

short path lengths and high clustering for the latter. An example of a complex network

is represented on the Figure 1.1.

Figure 1.1: A network graph of Paul Erdõs and his collaborators, courtesy of [1]. The nodes

represent mathematicians and the edges represent the relationship "wrote a paper with".
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A network structure or a topology can be mathematically modeled as a graph with

set of vertices (or nodes) representing the items of the network. The network structure

can then be analyzed using graph theory. An edge between two nodes represents a

connection between the two corresponding items. Edges can be directed or undirected,

weighted or unweighted, depending on the nature of the connection. To better mimic

the real-world (complex) network structure, it is common to add attributes to nodes

and/or edges or to have both directed and undirected edges on the same graph.

For large-scaled complex networks that have millions or billions of vertices, the

study in the form of traditional graph theory is not sufficient or sometimes possible.

When this is the case, the statistical methods for quantifying large complex networks

are used.

The ultimate goal of the study of complex network structure is to understand and

explain the processes that take place on the network topology such as spreading of

diseases or information propagation in social networks.

After statistical properties analysis, the model of a complex network is created. The

model can help us understand the meaning of statistical properties - how they came to

be as they are and how they relate to the behaviour of a networked system. Based on

the statistical properties and using the right model, the behavior of networked systems

can be predicted.

The basis of the complex network theory; the structure analysis and the process

modeling can be found in [2].
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2. Online social networks and
information propagation

A complex network of profile pages and connections between them created by users of

social networking sites such as Facebook and Twitter is refered to as online social net-

work. Through these networks, users can communicate and share information. Since

online social networks allow hundreds of millions of Internet users worldwide to pro-

duce and consume content, the structure of these social networks represents a huge

amount of data that can be used to extract important information about the systems

built upon the network.

An online social network’s structure is also formally represented by a graph where

nodes are users and edges are relationships between them. Direction of edges depends

on the social networking site’s social model. For example, Facebook’s social model of

friendship connects in bilateral and Twitter’s model of following connects in unilateral

manner.

When there is an edge between two nodes, users corresponding to that nodes may

exchange messages. One user can send messages to all of its connections at once or

he can send a message to one user at once, depending on the social networking site’s

social model. Users publish messages to share or forward various kind of information.

2.1. Information propagation

Information item is a news item or an idea that propagates amongst nodes contained

in the body of messages. We refer to the nodes that have adopted a particular item as

active and the nodes that have not adopted the same item as inactive. The activated

nodes never deactivate. It is important to define when exactly the node became active,

i.e. has adopted the information item.

When talking about information adoption for a particular node, some authors [3]

distinguish between exposure event and infection event. Exposure event occurs when
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a node gets exposed to the information item, in other words, when the user reads a

received message containing the information item. On the other hand, infection event

occurs when a message is sent. Every exposure may lead to infection event.

With the given network structure and a stream of messages with corresponding

content, timestamp, sender and receivers that are sent on the network, the times of all

infection events are known. In other words, from such data we can only know exposure

has happened sometime before the recorded infection event. Exposures that didn’t lead

to infection remain unknown. Additionally, one node can be exposed multiple times

before the recorded infection. The frequency of those exposures is unknown. For

simplicity, we will consider a node as active when it gets infected.

2.2. Social influence and information diffusion

The term diffusion in natural sciences refers to the net movement of a substance from

a region of high concentration to a region of low concentration. When a message

containing some information item is sent, receivers may or may not choose to send a

message containing the item to their other connections.

The action of adopting and resharing some particular information item is a deci-

sion based on the action of the previous message sender, therefore, individuals are

influenced by the actions taken by others. This social phenomenon when actions of a

user can induce his connections to behave in a similar way is known as social influence.

The stream of messages that carries the same information item among the nodes

of the social network driven by social influence causes the information to be adopted

in a similar way as the molecules of dye diffuse in water. The described spread of

information caused by social influence is therefore known as information diffusion.

2.3. External influence

When a user adopts particular information item, it is important to ask where did the

information item initially came from. If we assume a closed-world model with initially

active set of nodes, we can categorize all information adoptions as social influence

driven. However, the online social network is not a closed world and exposure to an

information item can originate from some other sources.

Due to emergence of mass media, especially online news sites, the information

can reach nodes of online social network driven by the influence of exogenous out-
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of-network sources, as well as by the social influence. Depending on the strength of

exogenous influence, the process of adopting information on the social network no

longer resembles diffusion.

With greater external influence, more and more users whose connections didn’t yet

adopt the observed information become exposed and infected. This particular kind

of adoption can only be explained by the influence of some unobserved exogenous

source. However, if it is known the exogenous source exists and the node has neigh-

bours that have already adopted the observed information item, we are not sure whether

the adoption of information for that node is due to exogenous or social influence.

The focus of this thesis is to present a model of information propagation with both

internal (social) and external influence developed in [4] and use it to classify whether

the adoption of a particular item of information for the given network is mainly internal

or external influence driven.
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3. Referendum Dataset

On 1st of December 2013 referendum on the question "Do you support constitutional

amendment about marriage being community of man and woman" was held in Croa-

tia. A week before, starting from 25th of November, Facebook application referen-

dum2013.hr [5] became active. Once the user registered, he/she could answer the

same referendum question and see how his/hers Facebook friends have answered.

With users consent, using the application the demographics data, timestamps of

registration and vote casting and the votes of 12763 registered users were collected,

as well as the network of their Facebook friends. The complete network structure of

both registered users and their friends contains roughly 1.695 million nodes with 4.461

million edges.

The degree distribution for the complete network of registered users only fits the

function x−α known as the power-law curve which is a common structural property of

complex networks [2]. The distribution of degrees is shown on the Figure 3.1.

The majority of users (72.6 %) who have casted their vote (11606 registered users)

voted against the support to the definition of marriage as stated in the referendum

question. Since that result differs greatly from the official referendum result where

33.5 % of 1.446 million voters voted ’against’ the definition of marriage as stated

in the referendum question, motivation for performing data analysis and developing

models for information propagation arose.

In this case, information propagation refers to information on the existence of the

application that spread among the network of users via link sharing through Facebook’s

social model of sharing or directly. The timestamps of registrations indicate the times

of adoption of that information item but how the adoption has happened remains un-

known.

Along with the network of users and their Facebook friends, major online media

coverage was observed and documented in the form of articles along with its times-

tamps of publishing.

The majority of peaks in voting activity dynamics align with the 11 documented
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Figure 3.1: The degree distribution for the network of registered users. p(k) is the probability

that a vertex chosen uniformly at random has degree k.

article timestamps, but the role of media in engaging the voters has to be confirmed

with a model.

For simplicity, we will assume every media article had the same chance of influ-

encing every recorded user and the users did not influence the media. With this as-

sumptions, the network of media nodes is completely influentially separated from the

user nodes, while the user nodes are not influentially separated from the media. Since

that is the case, it is reasonable to think of media nodes as a complete graph of nodes

that somehow exchange information between themselves.

3.1. Datasets

Referendum Dataset represents two network structures we will refer to as Restricted

and Complete Referendum Dataset. The Restricted Referendum Dataset consists of

two subgraphs. The first subgraph has 12763 nodes representing the registered users.

If two users are Facebook friends, there exists a bilateral connection between the two

corresponding nodes. Every node also carries the registration timestamp as a node

attribute.

The nodes of the second subgraph correspond to 11 recorded mass media articles.

These nodes also carry the information about the timestamp of activation as a node

attribute (the node is activated when the article got published). Every node in second
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subgraph has a bilateral edge with every other node in the subgraph. The two sub-

graphs are connected unilaterally: every node representing the media (from the second

subgraph) has edges directed to every node representing a user (but not vice versa).

By extending the first subgraph with nodes representing the Facebook friends of

registered users that did not register, network structure we will refer to as Complete

Referendum Dataset is obtained.

The Complete Referendum Dataset consists of 1695421 nodes representing the

users and their friends with 4461556 bilateral edges connecting them. The second

subgraph that represents the media is exactly the same as in the Restricted Referendum

Dataset. Additionally, the set of unilateral edges connecting the nodes of the second

subgraph to the nodes of the first subgraph is extended by the set of unilateral edges

connecting every node representing the media to every node in the first subgraph that

represents an unregistered friend of registered user(s).

The anonymized network of user nodes with corresponding timestamps of activa-

tion is stored in GML format [6] while the media nodes and other mentioned connec-

tions are defined implicitly.
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4. Methods

4.1. Principle of maximal likelihood

A statistical model SX(θ) is a family of parametrized probability distributions defined

for a set of real-valued parameters represented by vector θ and continuous or discrete

random variable X . The distribution can be described as a probability mass function

FX(x; θ) = P (X = x) or a probability density function fX(x; θ) = d
dx
FX(x; θ). With

given training set and a statistical model, the principle of maximal likelihood is used

to reduce the problem of choosing the distribution from SX(θ) for the given training

set, what is known as model fitting, to the maximization or a minimization problem.

Random sample is a set of m observations, examples or outcomes x1, x2, . . . , xm
drawn from the fixed but unknown distribution in SX(θ). Suppose that we have a

random sample drawn. If we assume the examples are independant, the probability of

a random sample is the product of probabilities for the individual examples with some

fixed parameters θ:

f(x1, x2, . . . , xm; θ) =
m∏
j=1

fX(xj; θ). (4.1)

The function L(θ;x1, x2, . . . , xm) = f(x1, x2, . . . , xm; θ) defined like (4.1) but

considered as the function of θ depending on m fixed parameters x1, x2, . . . , xm is

a likelihood function. It is used to compare how different members of the statistical

model fit the training data.

The principle of maximal likelihood says that for the given random sample (training

data or a dataset), we should use as a model the distribution from SX(θ) that gives the

greatest possible probability to the training data. Since the vector θ̂ that maximizes the

probability of the traning data also maximizes the likelihood function L, it is obtained

using the following equation:

θ̂ = argmax
θ
L(θ;x1, x2, . . . , xm). (4.2)
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The vector θ̂ is refered to as the maximum likelihood estimator (MLE) of parameters

θ.

The log likelihood function l(θ;x1, x2, . . . , xm) is the logarithm of the likelihood

function L(θ). Since logarithm is a monotonic strictly increasing function, maximizing

the log likelihood over all possible values of vector θ is equivalent to the maximization

problem stated in (4.2). Additionally, minimization of negative log likelihood is also

equivalent to (4.2).

When we want to determine θ̂ for the given dataset, we will choose between solving

the problem of maximizing the likelihood, maximizing log likelihood or minimizing

negative log likelihood.

4.1.1. Conditional likelihood

For two discrete random variablesX and Y , conditional probability is formally defined

as

p(y|x) = P (Y = y|X = x) =
P (Y = y,X = x)

P (X = x)
. (4.3)

We can say that (4.3) denotes the probability of a value y ∈ Y when the value of X

is known. If the variables are dependant, Y follows a probability distribution that is

different for different values of X . We parametrize all these probability functions with

the same vector of parameters θ.

The conditional likelihood of θ given data x ∈ X and y ∈ Y is

L(θ; y|x) = P (Y = y|X = x; θ). (4.4)

For finding the conditional likelihood estimator, the random sample consists of m

pairs {(x(i), y(i))|1 ≤ i ≤ m}. If all y(i) are independent when each is conditioned

on its own x(i), we can define probability of the random sample as a product of prob-

abilities for all pairs {(x(i), y(i))|1 ≤ i ≤ m} from the random sample, similar to

(4.1):

L(θ; y1|x1, y2|x2, . . . ym|xm) =
m∏
i=1

P (Y = yi|X = xi; θ). (4.5)

After determining θ̂, we can use it to compute probabilities for the alternative val-

ues y ∈ Y given any specific value of x. The procedure with this feature is called a

classifier.
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4.2. Gradient descent algorithm

The gradient descent algorithm can be used as an iterative optimization method for

solving minimization problems that cannot be solved directly.

Let’s say we want to find the values of parameter vector θ of n parameters, θ̂ ∈ Rn,

that minimizes function f(θ). Given the gradient vector of n partial derivates ∂
∂θj
f(θ)

with respect to each parameter θj , 1 ≤ j ≤ n from θ, the gradient descent starts from

random θ, and at each step simultaneously updates the values θj for all 1 ≤ j ≤ n in

the opposite direction of the gradient:

θj = θj − α
∂

∂θj
f(θ). (4.6)

The coefficient α refers to the stepsize or a learning factor. It determines how much

to move in the direction given by the negative value of the derivative.

When the procedure finds the vector θ that minimizes f(θ), partial derivatives will

evaluate to 0 and the procedure will terminate. Thus, procedure will find the local

minimum but there is no guarantee of finding the global minimum if the function f(θ)

is not unimodal. The use for the good value of α is also critical: the algorithm will

converge slowly with small α and a large value of α may cause the algorithm not to

find the nearest local optimum or it may even cause divergence.

Pseudocode for the described algorithm is given below as Algorithm 1.

Algorithm 1 The Gradient Descent Algorithm
for j = 0 to n do

θj ← rand(0, 1)

end for
repeat

θ′ ← θ

for j = 1 to n do
θ̂′j ← θ̂′j − ∂

∂θj
f(θ)

end for
θ ← θ′

until convergence

return θ

It is best to initialize θ with random values close to 0. If the initial values of θ are

large in magnitude, the procedure may also not find the nearest local optimum.
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4.2.1. BFGS

Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) is an example of advanced it-

erative method for solving unconstrained nonlinear optimization problems.

Similarly to the gradient descent algorithm, this method uses both first and second

order derivatives of the function for the update. Since BFGS has been proven to have

good performance even for non-smooth optimizations, it will be used for optimizations

in this paper.

During the optimization, the first order derivative has to be evaluated directly, un-

like second order derivatives in the form of Hessian matrix. The Hessian matrix can

be approximated using the gradient evaluations. BFGS also finds acceptable stepsize

α for every iteration.

4.3. Logistic regression

Suppose Y is a binary (Bernoulli) outcome and that x ∈ X is a real-valued vector with

n values x1, x2, . . . , xn. We model the probability that Y = 1 as a nonlinear function of

a linear function of x ∈ Rn with unknown real-valued vector of parameters θ ∈ Rn+1

using logistic regression.

Logistic regression is a model with conditional probability functions defined as:

P (Y = 1|X = x; θ) = σ(θ0 +
n∑
j=1

θjxj) =
1

1 + exp(−θ0 −
∑n

j=1 θjxj)
(4.7)

with x ∈ Rn and θ ∈ Rn+1.

The function σ(z) = 1
1+e−z is nonlinear always-increasing function and it is com-

monly known as the sigmoid function. The graph of the sigmoid function is shown in

the Figure 4.1.

The logistic regression model is easier to understand in the form of the log odd:

log
p

1− p
= θ0 +

n∑
j=1

θjxj (4.8)

where p is an abbreviation for P (Y = 1|X = x; θ).

The odds of event Y = 1 given X = x is exactly the ratio p
1−p . Since probabilities

range from 0 to 1, odds range from 0 to∞ and log odds, log p
1−p , range from −∞ to

∞. A linear expression on the right hand side of (4.8) can also take unbounded values

so it is reasonable to use a linear expression as a model for log odds.
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Figure 4.1: Function σ(z) = 1
1+e−z .

Logistic regression is the simplest reasonable model for a random binary outcome

whose probability depends linearly on n features represented by the feature vector

x ∈ Rn. The limitation of the basic logistic regression model is that the probability

must either increase monotonically or decrease monotonically as a function of each

feature xj ∈ x, 1 ≤ j ≤ n. To extend the model for polynomial dependencies, feature

vector can be extended with higher-order polynomial factors of the original features.

4.3.1. Logistic regression classifier

For the given vector of features x ∈ Rn drawn from the distribution of a multidi-

mensional random variable X , we want to predict a binary response from the binary

predictor Y dependent on X . The dependency (the conditional probability) is mod-

eled as a logistic regression. To learn a logistic regression classifier we must choose

parameter values θ̂ that best fit the training set data. Once training is complete and θ̂ is

obtained, we use thus defined conditional probability to make further predictions: the

value of Y is predicted as 1 if the probability of P (Y = 1|X = x) ≥ 0.5 for the input

feature vector x, otherwise it is predicted as 0.

Given the training set of m training example pairs {(x(i), y(i)) | 1 ≤ i ≤ m},
the logistic regression classifier is learned by minimizing the negative conditional log

likelihood.

Taking the logarithm of (4.5) and negating gives the expression for the negative
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conditional log likelihood, NCL(θ):

NCL(θ) =
m∑
i=1

− logL(θ; yi|xi) =
m∑
i=1

− log p(yi|xi; θ) (4.9)

If we denote P (Y = 1|X = xi; θ) as pi, the probability of the training example

pair (x(i), 1) is exactly pi, while the probability of the example (x(i), 0) is 1− pi. Now

we can simplify the above equation as

NCL(θ) =
∑
i;y=1

− log pi +
∑
i;y=0

− log(1− pi) (4.10)

The problem of minimizing NCL(θ) can now be defined similarly to 4.2:

θ̂ = argmin
θ
(−

∑
i;y=1

log pi −
∑
i;y=0

log(1− pi)) (4.11)

Because of the nonlinearity of the sigmoid function, the minimization problem

stated in (4.11) cannot be solved directly, therefore optimization techniques are used.

Derivatives of the NCL(θ) with respect to every parameter in θ have to be de-

termened in order to use previously described optimization techniques.

The partial derivative of NCL (4.9) with respect to parameter θj is

∂

∂θj
NCL(θ) = −

∑
i;y=1

1

pi

∂

∂θj
pi −

∑
i;y=0

1

1− pi
(− ∂

∂θj
pi)

With pi = 1
1+e−z where z = θ0 +

∑n
j=1 θj , we have

∂

∂θj
pi =

e−z

(1 + e−z)2
∂

∂θj
z = pi(1− pi)xj (4.12)

for 0 ≤ j ≤ n and for j = 0,

∂

∂θ0
pi = pi(1− pi).

Hence, ∂
∂θj

log pi = (1− pi)xj and ∂
∂θj

log(1− pi) = −pixj with additional exten-

sion of vector x with x0 = 1.

The derivation for the entire dataset is easily derived as the sum of the correspond-

ing partial derivatives of the examples:

∂

∂θj
NCL = −

∑
i;y=1

(1− pi)x(i)j −
∑
i;y=0

−pix(i)j = −
∑
i

(yi − pi)x(i)j (4.13)

Notation x(i)j refers to the j-th feature of the i-th feature vector x(i) in the random

sample.
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5. Modeling information propagation
with internal and external influence

5.1. Modeling the structure of the network

Formally, information propagation network can be represented as a graph G = (V,E).

We refer to elements of set V as vertices, nodes or peers. Every edge (u, v) ∈ E from

node u to node v denotes that node u can (socially) influence node v. In other words,

every neighbour of node u can be influenced by u. We call graph G the peer influence

graph.

We extend graph G with a set A of external nodes or authorities. Every authority

a ∈ A can potentially influence every node in V but not vice versa. That is, every

authority a ∈ A is connected to every node v ∈ V and can influence it. This influence

is not social and it was previously referenced to as external influence. Additionally, the

subgraph A is fully connected, i.e. every node a ∈ A is connected bilaterally with all

nodes b ∈ A if a 6= b. If we use F to represent the directed edges from authorities to

peers, we can define new a graph H = (V ∪A,E ∪ F ), the extended influence graph.

5.2. Modeling the process of information propagation

Information item propagates between both peer and external nodes. If a particular node

(peer or authority) has adopted an item, we refer to it as active. We call the nodes that

have not adopted the same item as inactive.

The actual propagation process can be observed as successive activation of nodes

throughout the network that we refer to as the activation sequence. Structure rep-

resenting the activation sequence will be a set of nodes along with their activation

timestamp. To describe the propagation process, we construct a new set of nodes D.

A node u ∈ V ∪ A is in D if its activation time is recorded. Every node in D has an
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attribute t — the activation timestamp.

We assume the propagation of a particular information item happens in discrete

time steps, from timestamp 1 to timestamp T . At every point in time, t ∈ {1, 2, . . . , T},
each inactive node can become active with probability P (x, y). This probability is a

function of x — the number of neighbours of the observed node that became active

before time t and y — the number of external nodes that became active before time t.

For every timestamp t ∈ {1, 2, . . . , T} and every currently inactive node u, an event

of u adopting the information is observed. The success of this event is a Bernoulli ran-

dom variable. If an event is successful, the node becomes active at that time. All

successful events are listed in the activation sequence. We will use the logistic regres-

sion to model the probability P and determine the parameters of this distribution based

on the activation sequence and the network H . That is, the probability P is defined as:

P (x, y;α, β, γ) =
1

1 + e−α ln(x+1)−β ln(y+1)−γ , (5.1)

where α, β and γ are the parameters of logistic regression. The parameter γ takes

the role of θ0 in (4.7).

The arguments (features) x and y come into linear transformation in the argument

of the sigmoid function transformed with the ln function. That will help in further

analysis of retrieved values of α and β since ln(x + 1) and ln(y + 1) have a similar

range of values.

The value of α in (5.1) captures the strength of social influence in the propagation

of an information item, while the value of β captures the strength of external (authority)

pressure. We refer to α and β as peer coefficient and authority coefficient, respectively.

Parameter γ models the impact of other factors in the propagation of an information

item, such as daytime dynamic, effect of random chance and other noises. We call γ

the externality coefficient.

5.2.1. Information propagation model training

We estimate α, β, and γ by learning the logistic regression classifier using negative log

likelihood function.

To calculate the likelihood, we first define the number of nodes that at the beginning

of time t had x active influencing neighbors and they themselves became active at time

twhen y authorities were active asA(x, y, t). Similarly, letN(x, y, t) be the number of

users who at the beginning of time t had x active influencing neighbors and they did not
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became active at time t when y authorities were active. Let A(x, y) =
∑T

t=1A(x, y, t)

and N(x, y) =
∑T

t=1N(x, y, t).

The maximum-likelihood estimation of parameters α, β and γ are those that max-

imize the likelihood of the data at time t. If every inactive node u is characterized by

two metrics, x and y, L(α, β, γ) is defined as

L(α, β, γ) =
∏
x,y

P (x, y)A(x,y)(1− P (x, y))N(x,y). (5.2)

In the next step, the problem of finding the arguments α, β, γ that maximize (5.2)

is reduced to minimization of negative log likelihood, just like in the general steps of

learning the logistic regression classifier:

− lnL(α, β, γ) = −
∑
x,y

lnP (x, y)A(x,y) −
∑
x,y

ln(1− P (x, y))N(x,y)

= −
∑
x,y

A(x, y) lnP (x, y)−
∑
x,y

N(x, y) ln(1− P (x, y)).
(5.3)

The derivatives with respect to α, β and γ of the same function were derived from

(4.12) and (4.3.1) and are as follows:

∂

∂α
(− lnL) =

∑
x,y

[−A(x, y)(1− P (x, y)) +N(x, y)P (x, y)] ln(x+ 1), (5.4)

∂

∂β
(− lnL) =

∑
x,y

[−A(x, y)(1− P (x, y)) +N(x, y)P (x, y)] ln(y + 1), (5.5)

∂

∂γ
(− lnL) =

∑
x,y

[−A(x, y)(1− P (x, y)) +N(x, y)P (x, y)] . (5.6)

The only problem remaining is the calculation of A(x, y) and N(x, y) that has

to be efficient for a network with million nodes (number of nodes in the Complete

Referendum Dataset).

5.2.2. Computing A(x, y) and N(x, y)

For the given extended influence graph H = (V ∪ A,E ∪ F ) and the set of activated

nodes D, A(x, y) and N(x, y) are computed using the following dynamic data struc-

ture: There are M + 1 buckets where M refers to the maximum number of active

neighbours one node could have. The xth bucket (with notation bucket[x]) will dur-

ing the procedure contain all nodes that at the time had x active neighbours. At the

beginning, all nodes are in the bucket[0].
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Every iteration of the algorithm tracks the dynamic of one time step. Values of

N(x, y) and A(x, y) are updated for the current y and all currently possible values of

x at every iteration. To correctly count the number of neighbours that became active

exactly before time t for every node that didn’t activate before time t, two passes

through the corresponding nodes in D are needed.

Before the first pass, values of N are updated. Value of N(x, y) is incremented for

every node that currently has x active neighbours. Since the bucket[x] stores all nodes

with x active neighbours at that time, N(x, y) is incremented by the size of this bucket.

This step is correct since the following invariants hold:

– at every iteration, one node is stored in at most one bucket and

– the activated nodes are not in any bucket.

With this update, the nodes that will become active at currently observed time t are

also counted in the values of N . This will be corrected in the first pass through the

nodes in D. When the value of A(x, y) updates for every activating node, correspond-

ing value of N(x, y) decrements.

In the second pass of nodes in D, the data structure of buckets is updated for re-

cently activated nodes and their neighbours. That is, every activated node is removed

from the structure and its neighbours are moved to the bucket that corresponds to one

activated neighbour more than they previously had.

Lastly, for every iteration, i.e. time step, value of y is updated according to the

activation timestamps of the external nodes.

The pseudocode of the described algorithm is given as Algorithm 2. This algorithm

assumes the existence of the function getBucket(node u) that returns the index of the

bucket where node u is currently stored in O(log(|V )) time.

Assuming all other functions take O(1) to complete, the time complexity of the

algorithm is derived as follows:

O(|V | from line 2

+ TM from lines 4− 6

+ T
|D|
T

ln(|V |) from lines 7− 11

+ T
|D|
T

[ln(|V |) +M ln(|V |)] from lines 12− 22

+ T |A|) from lines 23− 27

⇒ O(|V |+M |D| ln(|V |) +MT + |A|).
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Algorithm 2 Computing A(x, y) and N(x, y)

y ← 0

bucket[0]← V

for t = 0 to T do
for x = 0 to M do

5: N(x, y)← N(x, y) + size(bucket[x])

end for
for u ∈ D, u.t = t do

x← getBucket(u)

N(x, y)← N(x, y)− 1

10: A(x, y)← A(x, y) + 1

end for
for u ∈ D, u.t = t do

x← getBucket(u)

bucket[x].remove(u)

15: for n ∈ u.neighbours() do
if notActive(n) then

x′ ← getBucket(n)

bucket[x′].remove(n)

bucket[x′ + 1].add(n)

20: end if
end for

end for
for a ∈ A do

if a.t = t then
25: y ← y + 1

end if
end for

end for
return A,N
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5.3. Assumptions of the presented model

The presented model assumes that the probability of activation for a node grows mono-

tonically with number of activated neighbours as well as with number of active author-

ities. If the correlation between x and probability of activation were to be negative, the

coefficient α would be estimated to some negative value. Similarly, if the correlation

between y and probability of activation were to be negative, the coefficient β would be

estimated to a negative value.

It is reasonable to assume that social influence of an active node fades away after

certain time. That is also true for the external influence in the form of articles at

online news sites since the articles aren’t always as accessible as at the time of the

publishment. This model assumes the influence of an active node does not fade away

with time, i.e. the influence of a node, peer or authority, is constant after the activation.

Additionally, this model assumes the time progress in discrete time steps.

5.4. Randomization Test

We choose to infer whether information propagation of an item is better explained due

to peer or external influence by obtaining the maximum-likelihood estimates of peer

and authority coefficients α and β.

It is reasonable to say: if α > β than information is peer-propagated, otherwise, if

α < β, the information item is authority propagated. The question remains, how much

larger should the value of α (or β) be in order to characterize information item as peer-

(or authority- ) propagated and how to verify that this result is due to strong evidence

in the data.

In order to verify that this kind of conclusion is based on strong evidence in the

data, [7] and [4] proposed randomization test called time-shuffle test.

Let D be the subset of V ∪A that contains all nodes (peer or authority) that eventu-

ally become active. The time-shuffle test permutes the activation times of the nodes in

D. The randomized version ofD made in this way contains the same nodes asD (those

that eventually become active) with different attributes t. Denote by D′ randomized

version of D with permuted timestamp attributes t.

The input for the estimation algorithm consist of network H and set of nodes D,

denoted by 〈H,D〉. Let α(D′) and β(D′) be the estimates of peer and authority coef-

ficients for input 〈H,D′〉. Let α and β denote the maximum-likelihood estimation of

the peer and authority coefficients for the original input 〈H,D〉. Let D be the set of all
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possible randomized versions of set D via the time-shuffle test.

The strength of peer influences Sα is defined as the fraction of randomized datasets

D′ ∈ D for which α > α(D′), thus

Sα = PD′∈D(α > α(D′)). (5.7)

The strength of authority influence Sβ is defined similarly, as the fraction of ran-

domized datasets D′ ∈ D for which β > β(D′), thus

Sβ = PD′∈D(β > β(D′)). (5.8)

Both Sα and Sβ take values in [0, 1]. The large value of strength of peer influence

indicates stronger evidence of peer influence in the data. Similarly, larger value of β

indicates stronger authority influence in the data. The proof for correctnes of decision

making based on thus defined strengths for the similar model parametrized with 2

parameters can be found in [7].
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6. Experimental results and analysis

The model estimation was performed on the Referendum Dataset. Firstly, the estima-

tion was performed on the restricted graph of registered users without the nodes that

never become active. After that, the estimation was preformed on the complete graph

of both registered users and their friends.

The complete procedure was implemented in Python. Although the Referendum

Dataset cannot be currently provided, reusable parts of the implementation can be

found in [8]. For the work with GML [6] format and the graph structure, igraph library

[9] was used and for the minimization step, implementation of BFGS algorithm from

the SciPy library [10] was used. The 1st order derivatives as derived in (5.4), (5.5),

(5.6) were given to the procedure directly while the 2nd order derivatives in the form

of Hessian matrix were approximated internally. The initial values of α, β and γ were

taken uniformly at random from the range [0, 1]. For all experiments, a step size of 1

minute was taken and the data from the first 5 days of application being online was

analyzed.

6.1. About the values of A(x, y)

Let’s examine values of A(x, y) with respect to x for some fixed values of y and com-

pare them to the activation frequency for the time when all authorities were inactive,

i.e. when external influence was not present. The differences between these frequen-

cies may indicate the possibility of external influence.

For a fixed y, the value of A(x, y) stands for the frequency of activation for nodes

with x active neighbours at the time while exactly y authorities were active, i.e. the

activation has happened between the activation of yth and (y+1)th activated authority.

Value ofA(x, 0) is thus calculated for nodes that became active before the activation of

the 1st activated authority and the value of A(x, 3) is calculated for the nodes activated

between the activation of 3rd activated and 4th activated authority.

The graphs of A(x, y) for the fixed value of 0 ≤ y ≤ 11 on the Referendum
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Dataset have the shape similar to Figure 6.1b. However, there is one exception and it

is shown on the Figure 6.1c. For the reference, A(x, 0), frequency of activation before

authorities were present is shown on the Figure 6.1a.

In the case of information propagation where only social influence is present, graph

of activation frequency with respect to the number of activated neighbours x would

look similar to the Figure 6.1a. That is, activation frequency for nodes that have at

least one activated neighbour will be greater than the number of activations for nodes

with 0 neighbours active. A certain sign of authority presence is unexpected frequency

of activation for nodes that have 0 activated neighbours. The Figure 6.1b is an example

of that kind of activity where frequency of activation with 0 neighbours active exceed

the frequency of activation with 1 friend active.

The information propagation dynamic after activation of authority y = 7 is sus-

pected to be primarily pressured by internal (social influence) what is further approved

with Figure 6.1c. It is important to notice that, as time passes and more nodes be-

come active, the probability of a node having 0 active neighbours decreases, even for

the nodes that become active pressured by external influence. Although the authority

y = 7 becomes active relatively late, the frequency of activation related to authorities

that activate after y = 7 form a shape similar to 6.1b. The suspicion of information

about the application being propagated mostly pressured by external influence will be

confirmed with a model.

6.2. Estimating peer and authority coefficients

Estimation of α, β and γ for the Restricted Referendum dataset gives α = 0.16432,

β = 0.41826 and γ = −8.84820. The strength of peer and authority influence was

obtained by the time-shuffle test based on 1000 randomized instances of the input

graph and the strengths Sα = 0.996, Sβ = 0.633 were obtained. Frequency histograms

of estimated α(D′) and β(D′) for randomized datasets D′ ∈ D used in this test are

shown on the Figure 6.2.

The estimation algorithm was ran for the Complete Referendum Dataset and the

values α = 1.44990, β = −1.02360 and γ = −13.52627 were obtained. The negative

value of β may lead to conclusion the model, along with its assumptions, is not suitable

for the Complete Referendum Dataset.

The maximum likelihood function for the model was constructed by examining the

events of an inactive node ’trying’ to activate independently for all time steps and all

inactive nodes at that time. To reason about the negative value of β, the average fre-
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(a) Values of A(x, y) for y = 0.

(b) Values of A(x, y) for y = 3.

(c) Values of A(x, y) for y = 7.

Figure 6.1: Values ofA(x, y) for fixed y ∈ {0, 3, 7}with respect to number of activations with

x neighbours active calculated for the Referendum Dataset.
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Figure 6.2: Frequency histograms of estimated values of α (blue) and β (green) obtained

with original version of the model for the Restricted Referendum Dataset with time-shuffle test

based on 1000 randomized instances.

quency of activation and average number of trials (observed events) for the duration

of time intervals while y authorities were active, along with the corresponding success

rate is given in the Table 6.1a for the Restricted and in Table 6.1b for the Complete Ref-

erendum Dataset. Since the frequencies of activation and trials depend on the length of

the observed time interval, they were given in the tables as average frequency per time

step for every observed time interval. The success rate is observed, since the maximum

likelihood estimator tries to fit the distribution model to similarly defined success rate.

It is important to notice that average frequency of successful events for each time

interval stays the same for both Restricted and Complete Referendum Dataset. Since at

each time step only inactive nodes are observed and conducted in trials, it is expected

for the averaged frequency of trials to decrease with time as the observed set of nodes

shrinks in size. The smaller averaged number of trials for the events observed in late

time intervals for the Restricted Referendum Dataset, further induces the growth of

success rate as the number of active authorities increases.

Since there are 99.25% of nodes in the Complete Referendum Dataset that never

become active, the number of trials stays roughly the same for the observed time inter-

vals, as seen in the Table 6.1b. Therefore the success rate is roughly proportional to the
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y 0 1 2 3 4 5

successes 0.77791 9.00000 7.34400 3.91023 4.52381 3.74797

trials 12549.02 11792.91 11058.83 7636.39 6764.81 6443.38

success rate (10−3) 0.062 0.763 0.664 0.512 0.669 0.582

y 6 7 8 9 10 11

successes 1.26634 0.89345 0.67893 1.41053 3.40826 1.62857

trials 5156.96 3001.87 1882.61 1664.66 1434.86 879.45

success rate (10−3) 0.246 0.298 0.361 0.847 2.375 1.852

(a) Restricted Referendum Dataset.

y 0 1 2 3 4 5

successes 0.77791 9.00000 7.34400 3.91023 4.52381 3.74797

trials 1697340 1694519 1693785 1690362 1689491 1689169

success rate (10−6) 0.458 5.311 4.336 2.313 2.678 2.219

y 6 7 8 9 10 11

successes 1.26634 0.89345 0.67893 1.41053 3.40826 1.62857

trials 1687883 1685728 1684609 1684391 1684161 1639898

success rate (10−6) 0.750 0.530 0.403 0.837 2.024 0.993

(b) Complete referendum dataset.

Table 6.1: Average frequencies of observed successful activations per time step, average fre-

quencies of trials per time step and success rates for the time period when y authorities were

active on the Restricted and Complete Referendum Datasets.
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number of successful activations for every interval, i.e. it decreases, thus explaining

the negative value of β.

Since the conducted analysis has shown the proposed model is not suitable for the

given Complete Referendum Dataset, the model will be redefined.

6.3. Redefining the model of external influence

The activation of a node without any previously activated neighbours is a pattern at-

tributable to external influence. To make the proposed model suitable for our purpose,

the new definition of attribute y will be provided.

If y in (5.1) were to be defined as the frequency of activated nodes at the observed

time step whose neighbours haven’t been activated before, the estimated probability

distribution will be expected to increase with y. Additionally, thus defined attribute

doesn’t necessarily have positive correlation with time, unlike the initial definition of

y. Hence, the errors caused by decreasing number of trials at the end of the observed

time for the Restricted Referendum Dataset and the error caused by too many observed

nodes that finally don’t activate even though maximum number of authorities are active

for the Complete Referendum Dataset, have less impact on the results.

Estimation of α, β and γ for the Restricted Referendum Dataset with newly defined

model of external influence gives α = 0.16697, β = 0.92495 and γ = −8.60957. The

strength of peer and authority influence was again obtained by the time-shuffle test

based on 1000 randomized instances of the input graph and strengths Sα = 0.018,

Sβ = 0.959 were obtained. Frequency histograms of estimated α(D′) and β(D′) of

randomized datasets D′ ∈ D used in this test are shown on the Figure 6.3.

The estimation for the Complete Referendum dataset returns α = 0.89215, β =

1.36409, γ = −15.7230. The strength of peer and authority influence was again ob-

tained by the time-shuffle test based on 500 randomized instances of the complete input

graph and strengths Sα = 1.000, Sβ = 0.998 were obtained. Frequency histograms of

estimated α(D′) and β(D′) of randomized datasets D′ ∈ D used in this test are shown

on the Figure 6.4.
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Figure 6.3: Frequency histograms of estimated values of α (blue) and β (green) obtained

with updated version of the model for the Restricted Referendum Dataset with time-shuffle test

based on 1000 randomized instances.

Figure 6.4: Frequency histograms of estimated values of α (blue) and β (green) obtained with

updated version of the model for the Complete Referendum Dataset with time-shuffle test based

on 500 randomized instances.
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7. Conclusion

The model for information propagation given in [4] takes into account that informa-

tion propagation in social networks can be driven by both social (internal) and authority

(external) influence. The proposed model is used for determining whether the informa-

tion item is mainly propagated driven by internal or external influence. The probability

of activation for a node that has x active neighbours when y authorities were active is

modeled as logistic regression with 3 parameters, peer influence coefficient α, author-

ity influence coefficient β and externality coefficient γ. The logistic regression model

is then estimated using the maximal likelihood estimator. Based on the estimated val-

ues of α and β and taking into account the results of the randomized test called the

time-shuffle test, a decision is made.

The information propagation analysis for the Referendum Dataset based on the pre-

sented model of peer and authority influence has returned estimations for peer and au-

thority coefficients that indicate the model is not suitable for the Referendum Dataset.

That is expected since the model assumes the influence of an active node (peer or

authority) does not fade away with time which can be easily disproven for the Refer-

endum Dataset.

If the external influence for an inactive node at time t is measured by the num-

ber of nodes that activate at that time and do not have any active neighbours, for

estimated peer coefficient α and authority coefficient β, 0 < α < β holds on both

Restricted and Complete Referendum Dataset. The time shuffle test for the Restricted

Referendum Dataset has returned a small value of peer strength and a large value of

authority strength. Hence, the information propagation is mainly pressured by external

influence. The estimation and the shuffle test for the Complete Referendum Dataset

reassures the conclusion is correct.
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[8] Miholić Iva. Implementation of the peer and authority model. https://

github.com/imih/information-propagation, 2014.

[9] Gabor Csardi and Tamas Nepusz. The igraph software package for complex

network research. InterJournal, Complex Systems:1695, 2006.

[10] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific

tools for Python. http://www.scipy.org/, 2001–.

30



Information propagation in online social networks

Abstract

In this paper the information propagation model that takes into account both in-

ternal (social) and external (authority) influence is presented and revisited. Based on

the estimated parameters for the model and the randomization test called time-shuffle

test, a decision whether propagation of an information item is mainly peer or authority

influence driven can be made. The proposed model and its updated version were used

to describe an information item - the existence of the Facebook application referen-

dum2013.hr - as mainly propagated by external (authority) influence.

Keywords: complex networks, social networks, information propagation, internal and

external influence, peer and authority model,time-shuffle test



Širenje informacija u društvenim mrežama

Sažetak

U ovom je radu objašnjen model za širenje informacije u društvenoj mreži koji uz-

ima u obzir i unutranji (društveni) i vanjski (medijski) utjecaj na širenje informacije.

Na temelju predvid̄enih parametara modela te statističkog testa, moguće je donošenje

odluke o načinu širenja promatrane informacije. Točnije, možemo odrediti da li se pro-

matrana informacija više širila pod društvenim ili medijskim utjecajem. Izloženi model

te njegova izmijenjena verzija korišteni su za odred̄ivanje prirode utjecaja širenja in-

formacije o postojanju Facebook aplikacije referendum2013.hr.

Ključne riječi: kompleksne mreže, društvene mreže, širenje informacije, model širenja

informacije, društveni utjecaj, medijski utjecaj


