
SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 1571

De Novo Metagenome Assembly
Using Read Clustering

Luka Škugor

Zagreb, lipanj 2018.

I would like to thank my girlfriend Klara Rumora for all the support and help

in finishing this work. Moreover, I would like to thank my mentor Mile Šikić for the

patience and support he gave me through all the projects we’ve done together. Many

thanks to my friends and family as well, who gave me all the needed support throughout

the years.

iii

CONTENTS

1. Introduction 1

2. De novo Metagenome Assemby 2

3. Dataset - PacBio/Nanopore 4

4. Methods 5
4.1. Minimap2 . 5

4.2. Rala . 5

4.3. Clustering . 5

4.3.1. Naive - K-means . 6

4.3.2. MCL . 6

4.3.3. Overlap classification . 8

5. Assessing results 9

6. Implementation 11
6.1. Naive clustering implementation . 11

6.2. MCL clustering implementation . 13

6.3. Classifying overlaps . 15

7. Results 16
7.1. Clustering results . 16

7.2. Comparison of MCL edge values . 17

8. Discussion 25

9. Conclusion 27

Bibliography 28

iv

1. Introduction

De novo assembly is the process of reconstructing an unknown genome from sequences

of DNA acquired by a DNA sequencing output. One of the most modern methods of

acquiring such sequences today is shotgun sequencing. This method is the untargeted

sequencing of all genomes present in a sample[3][4].

Reconstructing a genome from such single species sample is essentially a task of

reconstructing a path from inter-sequence overlaps. In an ideal case, we could recon-

struct a genome using only overlap information. However, this is greatly complicated

by the presence of repetitive parts. Because these areas are much longer than current

sequences acquired by sequencing tools, it is hard to identify them. This can lead to

assembly error or fragmentation of the assembly.

The difficulty of the task is even further increased by sequencing errors. These are

the result of fast and high throughput of sequencing tools.

In an ideal case, reconstructed genome would have single sequence without any

errors or breaks. Unfortunately, most often, this is not the case and reconstructed

genome is represented in fragments. These basic elements are called contigs. They are

constructed by a set of sequentially overlapping DNA reads.

This task is even further complicated by sequencing a composition of microbial

communities[4].

1

2. De novo Metagenome Assemby

Metagenome assembly poses many additional challenges on top of single genome de

novo assembly. It is in many ways conceptually the same as the single genome as-

sembly. Differences between single species assemblers and metagenome assemblers

are visible in additional methods of trying to overcome additional challenges. These

are caused by sequencing errors, which generate non-genomic sequences, and repeti-

tive sequences. Consequently, this can lead to misassemblies and fragmentation of the

assembly[4].

There have been multiple published approaches to reconstruct a microbial commu-

nity composition from a pool of sequence reads. Selecting the best approach for the

job is a difficult task since published results largely depend on the aims of the study[4].

When assembling a single genome, we can usually assume that coverage will be

uniform. The assembler can then use coverage data to identify repeat sequences, se-

quencing errors and etc. Metagenomic assembly is a bigger challenge since coverage

of each genome depends on the presence of other genomes in the community. Low-

abundance genomes could end up fragmented because overall sequencing depth might

not be enough to construct sufficient connections in the graph.

An additional problem is laying in the fact that a sample can contain different

strains of the same bacterial species. Such genomically similar species can cause

branches in the assembly graph. In such branching, differentiation between two species

can be as simple as a single nucleotide variant or absence of some parts of the genome.

Bacteria species like NCTC204 and NCTC418 are an example of such problem which

we found very difficult to overcome.

Assemblers which are targeted towards metagenome-specific inputs, try to over-

come these challenges in multiple different ways. Most of them focus on creating new

tools which are tailored for metagenomic input[4].

In this work, we investigate methods of clustering reads from the same species. If

done well, this could result in highly precise clusters containing only the reads from

the same species. This would make the task of reconstructing a metagenome sequence

2

similar to the task single genome assembly thus enabling us to reuse existing tools for

de novo assembly.

3

3. Dataset - PacBio/Nanopore

Dataset used in this work consists of several bacteria species samples. They were pro-

duces using long-read sequencing technologies such as the Oxford Nanopore MinION

and Pacific Biosciences.

To simulate metagenomic input, we joined multiple of these sequences. Most of

our test inputs comprised of two combined sequences to investigate how we could

separate reads from multiple species when having similar coverages with overlapping

areas. We also wanted to observe how well could genomes be reconstructed from the

created cluster as there is a possibility of fragmentation when reducing sample size by

clustering.

4

4. Methods

In the following section, we describe methods and tools which were used to implement

and test our algorithm.

4.1. Minimap2

Minimap2 is a versatile sequence alignment program that aligns DNA or mRNA se-

quences against a large reference database. Among others, it is typically used to find

overlaps between long reads with error rate up to 15%[2].

We used it in our implementation to generate clustering data for our algorithms

such as coverage, number of overlaps and interconnected reads.

4.2. Rala

Rala is a DeNovo genome assembly layout tool. It is intended as a standalone module

to assemble raw reads generated by third-generation sequencing.

Additionally, Rala also employs techniques to avoid errors such as chimeric reads

which are cut. This is accomplished by scanning coverage graphs and cutting chimeric

reads. After preprocessing is complete, an assembly graph is built and simplified with

transitive reduction, trimming, bubble popping and heuristics which untangle leftover

junctions in graph[6].

4.3. Clustering

We attempted to employ multiple features when clustering reads. However, most

widely and simple to use metric were multiple percentile coverages of each read. This

was primarily used because of expected similarity in coverages across reads from the

same species.

5

Percentile coverage of the read is percentile value of coverages of all the bases in

read. Coverage of a single base is calculated by counting all the overlaps over that base.

If median coverage of a read is too low, we instead found the longest covered area in

the read which minimum coverages are at least 3. We then calculated percentiles only

in that area. This algorithm is similar to the one used in Rala, but we separated it as

a standalone module to ease development and to minimize the modifications of Rala

module[6].

4.3.1. Naive - K-means

The simplest algorithm to implement with regarding to median coverage of reads was

a K-means clustering with median coverages of the read as a single feature.

To determine the number of clusters we ran the algorithm on the size range of

[2, 10] and determined the best one by the BIC score.

Since this algorithm performs very poorly when median coverages of multiple

species overlap (which they often do, especially in real metagenomic samples), we

decided to take additional post-clustering steps to improve our clustering.

The improvement upon simple K-means clustering was done iteratively by moving

reads from one cluster to the other. To decide how we transfer read from one cluster to

other we used overlaps info from minimap2. The basic idea was to transfer reads to the

cluster in which they had most overlaps. This, however, often resulted in large clusters

containing reads from multiple genomes. Consequently, the error was most likely

in already large mixed clusters, which would sink reads from all the other clusters

regardless of the existence of cross-species overlaps.

We tried to maximize the effect by weighing every node in the cluster. The weigh-

ing method we used, transferred reads to the cluster with the largest connected graph.

Since this method heavily suffered due to very large multi-species clusters, we

tried a different implementation of clustering. The method we decided on is MCL

clustering because of its determinism and performance on very large clusters of up to

million nodes[5].

4.3.2. MCL

The MCL algorithm is used to find cluster structures in graphs by a mathematical boot-

strapping procedure. It simulates random walks through the graph. This is achieved

by using stochastic matrices (also known as Markov matrices by which MCL got its

6

name) that mathematically simulate random walks on a graph. Markov matrix is sim-

ply a squared matrix describing probabilities of transitions between nodes. MCL uses

Markov chain expansion and additional operator of inflation to emphasize lose and

strong bonds between nodes. Expansion corresponds to taking the power of the matrix

using the normal matrix product. Inflation corresponds to taking the Hadamard power

of a matrix, followed by a scaling step:

(Mpq)
r/

k∑
i=1

(Miq)
r

Result matrix of such operation is once again Markov matrix. The inflation is re-

sponsible for strengthening and weakening of the bonds between nodes. These two

operations are used alternately until convergence at which point, there is no path be-

tween some segments. This collection of resulting segments is then interpreted as a

clustering. The inflation parameter r controls the extent of strengthening and weaken-

ing which in turn influences granularity of clusters[5].

We used existing MCL algorithm implementation. Two mandatory inputs of the

MCL tool are graph descriptor file and granularity decimal value. Granularity param-

eter determines the number of clusters. Selecting the higher granularity parameter will

result in larger number of clusters. This is critical to layout step in our pipeline be-

cause having smaller clusters will result in lower genome coverage. As a consequence,

we run in the risk of fragmenting the genome and even being unable to reconstruct all

parts of the genome.

On the flip side, decreasing granularity value results in very large and possible

multi-species clusters thus recreating the initial problem we wanted to avoid from the

previous implementation.

The parameter of granularity has been chosen empirically in order to find the sweet

spot between above-mentioned issues. The purpose was to achieve largest possible

clusters without sacrificing too much precision.

Input graph of MCL represented reads as nodes of the graph and overlaps between

them as edges. The main challenge of this approach is finding a function which would

map reads from the same species closer together as opposed to those from different

ones. Granularity parameter was changed depending on the function used for generat-

ing input to the MCL.

7

4.3.3. Overlap classification

Our implementation heavily relies on overlapping data from minimap2 so filtering out

bad overlaps (i.e. overlaps between reads from different species), could increase the

precision of our clustering methods. To identify inter-species overlaps, we employed

classification methods from machine learning and marked bad overlaps as positive

matches.

While choosing the appropriate classification algorithm, we looked for the solution

that would maximize the recall score. By having the perfect recall score, all of the

inter-species overlaps would be removed. However, impaired precision would degrade

the performance of the layout stage. Consequently, we decided to set the hard limit on

the lowest possible precision to 50% to avoid such degradation in final results.

We improved our pipeline by removing all positively classified overlaps from over-

laps input file which is used in clustering algorithms and Rala. Even though filtered

out overlaps can be used again in determining the coverage of the read, we didn’t em-

ploy this strategy as it would likely bring no major improvement and possibly even

deteriorate the performance of the pipeline.

8

5. Assessing results

To assess our algorithm, we joined sets of reads from multiple different single-genome

bacteria sources. Input was first run through a clustering algorithm and each resulting

cluster was afterward processed through Rala.

Results assessment is done in two stages. First one is performed immediately after

clustering and is used to assess the precision of each cluster in accordance to the most

representative reference. This is done by counting the most representative reads in that

cluster and dividing it by the total amount of reads.

However, because reads of a single reference can span across multiple clusters, it

is important to check whether this sample size is qualitative enough to construct the

genome. To achieve this, we ran each cluster through Rala and mapped all contigs back

to original references. Only highly mapped references (maximally 10% less coverage

than Rala ran on the original input for that reference) are then taken into consideration

for the observance. Observed features on results are mean contig purity, mean contig

purity of mixed contigs, lowest contig purity, contaminated length of contigs, number

of contigs, count of mixed contigs and NG50 rating and purity of NG50 and NG90

contigs. Contig purity p is defined similarly as cluster accuracy. The maximum length

covered by a single source reads is divided by the total contig length l. Contaminated

length of a contig is calculated as follows:

(1− p) · l

Contig purity and total contaminated length of contigs are useful to inspect how

much improvement, if any, is achieved while using clustered metagenomic input. For

example, contig purity can be a good indicator of overall cleaner contigs, while the

lower total contaminated length is a definitive indicator of better contig quality across

the whole cluster.

We also inspected purity of contigs used in NG50 and NG90 scores as those are

good indicators of how clean would be the reconstructed genome if there wasn’t any

fragmentation.

9

To measure effects of the clustering algorithms, we compared these results to two

different baselines. First one is the result of Rala run with combined input and no

clustering. We can observe same features with this method. The second one is the

result of Rala run separately for each joined input. This way, we can observe our

results in comparison to the imaginary outcome of a perfect clustering

10

6. Implementation

All developed algorithms were implemented in Python3 and can be found at GitHub

with exception of upgrades to Rala, which is written in C++ and is included as a sub-

module.

To increase speed and boost ease of development, implementation is divided into

many simpler scripts. These scripts are then combined together in a pipeline (Figure

6.1) that performs all the necessary steps from joining the reads as a simulated input to

layout phase with included metric results.

We used two different clustering methods. First one is a k-means clustering ap-

proach by grouping reads around same percentile (e.g. median) coverage and ad-

ditional adjustment. The second one used MCL algorithm and input utilizing read

overlaps, percentile coverage of reads and other overlap information.

6.1. Naive clustering implementation

Naive clustering implementation used K-Means implementation from scikit-learn li-

brary.

Ideally, all reads from the same species should have the same coverage, so this

approach could group reads together very well if the coverages of the species in the

metagenomic sample differentiate enough. However, since coverages of a single species

often span across multiple coverage values rather than spiking in a single one, it is

commonly observed that multiple species share some coverage span (Figure 6.2).

It is also hard to disregard high error rates of sequencing methods and natural oc-

curring of false overlaps between unconnected segments of a genome. Due to these

effects, we implemented cluster correction step in which we iteratively move reads be-

tween clusters. Correction algorithm that proved to be the best in this scenario used

information about read overlaps and interconnection of the reads within a cluster. For

each read in a cluster, we calculated the total number of the reads in a connected graph

in that cluster. This value would represent the weight w of each node in the cluster.

11

https://github.com/lukadante/rala-cluster

Join inputs

minimap2

Generate

reads data

Clasify

overlaps

Reduce

overlaps

Generate

MCL input

MCL

Rala1 Ralan

metrics1 metricsn

. . .

. . .

Figure 6.1: Flow chart of the pipeline of our complete solution.

The correction step would move any read from i cluster to j cluster based on the

total sum of the weighted connections. The goal is to find the cluster with maximum

p[i, j] which is the cost of having i-th read in the j-th cluster. This cost is calculated

by summing up all the weights of the nodes to which the read i is connected in each

cluster. Weight is represented as the total amount of nodes in the graph in which

particular node belongs. Example is given in Figure 6.3.

12

median coverage

re
ad

co
un

t

Figure 6.2: Example of overlapping median coverages histograms for different genomes. In

such situations, it is impossible to separate reads from different genomes just by coverage infor-

mation. Green and orange histograms represent median histogram coverages of two different

genomes, while the blue one is their aggregate.

6.2. MCL clustering implementation

Our more advanced clustering implementation uses MCL. In this implementation,

reads were represented as nodes and their overlaps as edges. The idea behind this

approach was to find a way to separate reads in highly connected and dense clusters.

Because this is the core idea of MCL, we tried to find a function which would map

reads from the same species closer together as opposed to those from different ones.

We initially used granularity of 1.09 which was chosen empirically. However, it

may be needed to adjust this value for larger input sets.

Values between edges represent only varying formula in this approach. We tried

few different methods to separate different species as much away from each other.

To build upon the idea of naive clustering, we used a similar approach in first MCL

implementation. We calculated edges as an absolute difference between overlapping

percentile coverages. This approach appeared to be better in many cases than naive

13

Figure 6.3: Example of naive clustering iterative correction step. Cost of having red node in

the existing cluster is the highest of costs across all clusters and doesn’t require transfer.

approach and it was also much more consistent.

However, since this approach also didn’t have greatly improved results over results

of Rala ran without clustering, we sought other metrics to define values of the edges

between reads in MCL clustering.

These additional approaches were greatly inspired by classification step in which

we explored various features that can be used in detecting invalid overlaps.

Since MCL doesn’t have a way to deal with outliers, there is a significant amount

of sparse (small) clusters. We ignored any clusters which contained less than 1000

reads. These reads could be reassigned to larger clusters by using similar methods

of transferring reads in our naive implementation. We haven’t attempted this, how-

ever, because the amount of reads in such clusters is significantly small (<1% of total

sample) therefore it most likely would not have a great impact on the results of the

pipeline.

14

6.3. Classifying overlaps

We tried three different classification algorithms – Naive Bayes, SVM with RBF kernel

and Random Forrest.

Random Forrest proved to be the best (Figure 6.4) for this problem since it pro-

duces similar or slightly worse recall scores as the other two but significantly higher

precision scores. It is worth noting that although we tried to optimize for highest re-

call score, precision score still plays an important part in the outcome. If we remove

too much fo the correct overlaps, we’re risking the fragmentation of the assembly. In

extreme situations, this could even lead to the absence of some parts of the genome

because there aren’t enough overlaps to reconstruct the path. Because of these issues,

we opted for the Random Forrest because it offered acceptable precision while main-

taining decent recall scores.

Features of the final implementation used the minimum and the maximum dif-

ference of two percentiles of read coverage, the difference of overlap count on the

overlapping side, percentile coverages difference and overlap quality. We defined the

quality of the overlap as a ratio between the number of residue matches and the align-

ment block length of minimap2 output[1].

This implementation wasn’t thoroughly investigated and requires more research as

it wasn’t in the focus of our study.

Classification

algoirthm precision recall

Random Forrest 0.392 0.020

SVM 0.271 0.141

Naive Bayes 0.303 0.003

Classification

algoirthm precision recall

Random Forrest 0.410 0.092

SVM 0.386 0.363

Naive Bayes 0.394 0.023

Classification

algoirthm precision recall

Random Forrest 0.733 0.237

SVM 0.192 0.660

Naive Bayes 1.0 0.000

Classification

algoirthm precision recall

Random Forrest 0.767 0.259

SVM 0.140 0.502

Naive Bayes 0.825 0.000

Figure 6.4: Classification stage tested on 4 different samples with Random Forrest, SVM and

Naive Bayes. Tests were done independently by splitting each sample in train and test sets in

1 : 99 ratio.

15

7. Results

7.1. Clustering results

To assert that our advanced implementation is truly better than the naive implementa-

tion, it is required that the total error rate of all clusters is measured. This is calculated

by summing up all of the reads which are a minority in each cluster and dividing it by

the total amount of reads. We compared our initial MCL implementation to the naive

one and observed significant improvements (Table 7.1). Initial implementation had the

granularity parameter set to 1.10 and used the difference of median coverages as edge

value.

Table 7.1: Cluster precision results using naive and MCL methods.

Joined bacteria MCL method Naive Method

NCTC74, NCTC235 1.32 19.43

NCTC74, NCTC2218 0.04 6.03

NCTC74, NCTC3750 0.06 6.31

NCTC204, NCTC235 18.80 11.28

NCTC204, NCTC2218 0.03 6.50

NCTC204, NCTC3750 0.02 5.43

NCTC235, NCTC418 31.89 34.55

NCTC235, NCTC1080 0.05 5.27

NCTC418, NCTC2218 0.07 6.45

NCTC418, NCTC3750 0.08 6.53

NCTC1080, NCTC2218 0.07 39.52

NCTC1080, NCTC3750 0.06 17.81

It is proven to be more precise in most examples. Moreover, it is more consistent as

opposed to our naive approach in which results can vary depending on the run. This is

16

due to the indeterministic trait of the first stage of clustering. The second stage of naive

clustering heavily depends on the first one and tends to transfer most of the reads into

a single large mixed cluster. This often occurs when the input has a large overlapping

area of coverages (6.2).

However, we didn’t track the count of clusters because each implementation pro-

duced an acceptable number of clusters in the range of [2, 10]. It is also possible that

purer examples like joined reads from NCTC204 and NCTC2218 sequences could be

further improved by decreasing the granularity parameter.

However, this was not the target of our study as these examples didn’t have any

mixed contigs even in the baseline results. In one such example, we joined 4 reads

together which showed to be easily mutually separable and still got no mixed contigs

from the output of layout step.

7.2. Comparison of MCL edge values

Our initial implementation utilizing MCL algorithm valued edges of the graph as the

difference of the percentile coverages of the reads. This worked excellent for the se-

quences which have very high average difference of percentile coverages (Table 7.1,

Figure 7.1).

To improve our solution, we also tried removing overlaps from the MCL input

which are not strictly overlapping on one side. These overlaps are also filtered in

Rala, but removing these overlaps earlier would erase illegal bonds in the graph and

could potentially create cleaner clusters. We observed that, in some of our examples,

roughly half of the illegal overlaps can be removed with this approach. However, this

also removed just about the same ratio of the legal overlaps. The following formula

was used for determining overlaps on strictly one side:

f(x) =


1, if queryleft > targetleft ∧ queryright < targetright

0, if queryleft > targetleft ∧ queryright < targetright

−1, otherwise

where (query/target)left/right defines trailing leftover before or after the overlap

on query or target and positive result values represent strict overlapping on one side (1

for right overlap on query and 0 for left overlap on query read).

This approach doesn’t yield significantly different results. Comparing clustering

purity gives almost the same cluster count and distribution (Figure 7.2). More interest-

17

median coverage

re
ad

co
un

t

Figure 7.1: Example of two genomes easily separable on the basis of their median coverages.

Orange and green histograms represent median histogram coverages of NCTC 235 and NCTC

1080 bacteria respectively, while blue one is their aggregate.

ingly, the first implementation of MCL (using all edges) yields better NG50 and NG90

coverages in most cases (Table 7.2).

There are two issues with the approach of using the difference between percentile

coverages as edge values. Firstly, there is no clear indicator that overlapping reads of

the same species should have similar coverages in metagenome assembly. We could

expect this in a single species sample without errors. However, in a multispecies sam-

ple, this is disrupted by error in sequencing, repetitive sequences and false overlapping

by a multi-species sample (Figure 7.3). Secondly, having overlapping regions of same

percentile coverage values could result in bringing inter-species reads closer together

in MCL input graph. To avoid this, we introduced other metrics. First one is the max-

imum difference between two percentile coverages. For example, we took maximum

difference of 50th and 90th percentile coverage.

max(abs(a_cov90 − b_cov50), abs(b_cov90 − a_cov50))

The second added feature was the difference in overlap count on the overlapping

side.

18

Table 7.2: Sample comparison of layout results using base method and base method using

strictly overlapping edges.

Joined input set Reference genome Rating 1st method 2nd method

NCTC204, NCTC235

NCTC235
NG50 1 4

NG90 1 5

NCTC204
NG50 7 13

NG90 15 31

NCTC235, NCTC418

NCTC235
NG50 2 5

NG90 4 5

NCTC418
NG50 5 1

NG90 N/A N/A

To combine these values together as a single value in the edge, we took the median

relative value of these three features as shown in Figure 7.5. We also tried approaches

with minimum and maximum values of said three features, but median has shown to

be the best choice in our samples.

This approach resulted in a significantly smaller number of clusters while maintain-

ing approximately same precision score across clusters (Figure 7.4). In this approach,

granularity value of 1.12 was used. In order to compare the quality of clusters gener-

ated by both methods, we tried matching the number of clusters in base MCL approach

and the new one. We attempted this by trying to reduce the number of clusters in base

approach. However, cluster count didn’t change significantly after granularity value

was decreased by 0.02.

The contaminated length was smaller and median purity of NG50 and NG90 con-

tigs were overally higher in most cases. However, this approach resulted in higher

fragmentation represented by deteriorated NG ratings in nearly all cases despite hav-

ing larger clusters.

We also tried multiplying each edge value with the squared quality of the over-

lap. This increased number of clusters once again and deteriorated overall precision

of clusters. Decreasing granularity parameter decreased the number of clusters once

again, but retained worse cluster precisions.

Our best approach maintains same species coverages as Rala ran on single input

sequences. It also somewhat improves on the Rala ran without clustering. In most

samples, we observed much cleaner contigs (Table 7.3). However, additional fragmen-

19

Cluster precision 1st species read count in cluster 2nd species read count in cluster

0.6267 26405 44335

0.7340 10425 28768

0.7232 7158 18706

0.5870 6789 9651

0.5842 4982 6999

0.7013 2830 6643

0.7003 2770 6474

0.9999 8967 1

0.5087 3898 3764

0.7477 1604 4754

0.8739 573 3970

0.5597 1306 1660

0.6121 713 1125

(a) removed non-strictly overlapping edges

Cluster precision 1st species read count in cluster 2nd species read count in cluster

0.6307 23828 40696

0.6584 13008 25075

0.7187 10591 27064

0.5869 7162 10177

0.6926 5158 11619

0.9998 9514 2

0.6925 2591 5834

0.5448 4528 3784

0.7593 1447 4564

0.6768 1892 3962

0.9997 2 5841

0.5640 1314 1700

(b) base MCL edge values

Figure 7.2: Comparison of MCL edge values clustering results

tation occurred in our approach as expected.

20

Figure 7.3: Coverage graph of a sample contig produced by Rala.

21

Cluster precision 1st species read count in cluster 2nd species read count in cluster

0.9648 1486 40778

0.9989 24789 27

0.9742 426 16071

0.7785 3342 11746

0.9017 1448 13279

0.9412 654 10468

0.9996 4 10371

0.9277 596 7642

0.9477 405 7345

0.9989 7314 8

0.8005 1045 4193

0.9998 1 5162

0.952 207 4104

0.999 3 2885

0.9995 2063 1

(a) base MCL edge values

Cluster precision 1st species read count in cluster 2nd species read count in cluster

0.9708 2196 72948

0.8454 11195 61240

0.9993 14677 10

0.9995 12789 6

0.999 2929 3

(b) median of three features edge values

Figure 7.4: Comparison of MCL edge values clustering results.

22

pcov_x - x percentile coverage of the read

np.median([

abs(

info[a_id].pcov_10 - info[b_id].pcov_10

) / max(

info[a_id].pcov_10, info[b_id].pcov_10, 1

),

max(

abs(

info[a_id].pcov_90 - info[b_id].pcov_50

) / max(

info[a_id].pcov_90, info[b_id].pcov_50, 1

),

abs(

info[b_id].pcov_90 - info[a_id].pcov_50

) / max(

info[b_id.]pcov_90, info[a_id].pcov_50, 1

)

)] + ([

abs(

(

info[a_id].rightside_overlaps -

info[b_id].leftside_overlaps

) / max(

info[a_id].rightside_overlaps),

info[b_id].leftside_overlaps), 1

) if side == 0 else \

(

info[a_id].leftside_overlaps -

info[b_id].rightside_overlaps

) / max(

info[a_id].leftside_overlaps,

info[b_id].rightside_overlaps, 1

)

)] if side != -1 else [])

)

Figure 7.5: Algorithm for calculating edge values for MCL in our final approach

23

Table 7.3: Sample comparison of layout results using MCL clustering method and baseline

method of running Rala without clustering.

Joined input set Reference genome Rating Our approach Baseline

NCTC235, NCTC418

NCTC235
NG50 4 4

NG90 4 4

NCTC418
NG50 2 2

NG90 N/A N/A

Maximum total contaminated length 317848 1954764

NCTC74, NCTC204

NCTC74
NG50 5 3

NG90 9 N/A

NCTC204
NG50 17 9

NG90 N/A N/A

Maximum total contaminated length 68114 2085259

24

8. Discussion

Naive cluster implementation heavily suffered due to very high possibility and often

occurrence of creating large clusters of multiple species. In such situations, the first

stage already resulted in highly mixed and large clusters. This would be even further

emphasized in the second stage where most of the reads would be moved to the exact

same large cluster, creating a super-large multi-species cluster containing most of the

sample reads.

MCL has easily proven to be better at clustering reads in this situation. However,

its weakness lays in a large number of illegal overlaps which are translated as edges

in the MCL input. This issue could be resolved by removing additional edges. It is

worth noting that some of the joined sequences have some amount of false overlap-

ping, which suggests that perfect classification of illegal overlaps may not be needed

to achieve highly accurate clustering results. Second, and maybe significantly easier

way to improve the clustering would be exploring additional mapping functions for the

values between edges. MCL does a great job in separating clusters deterministically,

but values between edges should be chosen carefully. If done wrong, MCL clustering

can result in large multi-species clusters similarly to naive implementation.

One of the downsides of all our approaches to clustering with MCL is that species

with very high overlap in the genome will be easily grouped together just on the ba-

sis of connectivity between clusters. In these situations, it is impossible to separate

clusters based on the features we used. This is best represented in case of joined input

of NCTC204 and NCTC418 which are genomically similar species and have a large

number of interspecies overlaps.

Selecting higher granularity values would improve the cluster precision as well as

contig purity but would result in more fragmented contigs. It would also result in a

fragmented clustering, meaning that we couldn’t have reconstructed a genome from a

single cluster but would rather need to group some clusters back together. This leads

to other problems since it would be hard to identify clusters which contain the same

species contigs. One possible solution to this problem is to identify clusters which

25

would be mapped to known genomes with high accuracy. However, this requires great

time and space complexity of the algorithm.

26

9. Conclusion

Metagenomic sequencing poses many challenges. Reads clustering may be a sufficient

way to solve this issue. Our final implementation improved the results of Rala tool by

creating cleaner contigs. The tradeoff of this approach is additional fragmentation of

the assembly.

However, it cannot reliably separate clusters that have similar genomic sequences.

Moreover, it is difficult to choose cluster count. By generating larger cluster count than

required, the assembly is additionally fragmented. This is a recurring problem in all

our approaches.

Both, the MCL input and classification of invalid overlaps, could be further im-

proved. Classification of invalid overlaps wasn’t thoroughly researched and could give

a significant performance boost to our approach. MCL could be improved as well, by

further investigation of the mapping functions for the computation of the edges.

27

BIBLIOGRAPHY

[1] Heng Li. miniasm. URL https://github.com/lh3/miniasm/blob/

master/PAF.md.

[2] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,

stranica bty191, 2018. doi: 10.1093/bioinformatics/bty191. URL http://dx.

doi.org/10.1093/bioinformatics/bty191.

[3] Mirjana Domazet-Lošo Mile Šikić. Bioinformatika - skripta. 12 2013.

[4] Christopher Quince, Alan W Walker, Jared T Simpson, Nicholas J Loman, i Nicola

Segata. Shotgun metagenomics, from sampling to analysis. 35:833–844, 09 2017.

[5] Stijn van Dongen. Graph clustering by flow simulation. 2000.

[6] Robert Vaser. Rala. Faculty of Electrical Engineering and Computing, 2018. URL

https://github.com/rvaser/rala.

28

https://github.com/lh3/miniasm/blob/master/PAF.md
https://github.com/lh3/miniasm/blob/master/PAF.md
http://dx.doi.org/10.1093/bioinformatics/bty191
http://dx.doi.org/10.1093/bioinformatics/bty191
https://github.com/rvaser/rala

De Novo Metagenome Assembly Using Read Clustering

Abstract

Metagenomic assembly poses many additional challenges over single genome as-

sembly. In this work, we tried tackling these issues by clustering reads produced by

third-generation sequencing tools. In an ideal case, this would allow the use of existing

de novo assembly tools for single genome assembly on metagenomic input. Our clus-

tering implementation showed some improvement of existing tools for de novo assem-

bly when using them for metagenome assembly, but still requires a lot of research. The

source code of the solution is available at https://github.com/lukadante/rala-cluster.

Keywords: metagenome assembly,clustering,DNA

De novo sastavljanje metagenoma koristeći metode za grupiranje očitanja

Sažetak

Kod metagenomskog sastavljanja, suočeni smo s mnogim dodatnim izazovima u

odnosu na sastavljanje jednog genoma. U ovom radu, pokušali smo riješiti ove prob-

leme grupiranjem segmenata koje proizvode alati treće generacije za sekvenciranje.

U idealnom slučaju, to bi omogućilo korištenje postojećih de novo alata za sastavl-

janje genoma na metagenomskom uzorku. Naša implementacija grupiranja je donekle

poboljšala postojeće alate za de novo sastavljanje kod primjene na metagenomskom

uzorku, no još uvijek su potrebna daljnja istraživanja. Izvorni kod rješenja dostupan je

na adresi https://github.com/lukadante/rala-cluster.

Ključne riječi: metagenomsko sastavljanje,grupiranje,DNA

	Introduction
	De novo Metagenome Assemby
	Dataset - PacBio/Nanopore
	Methods
	Minimap2
	Rala
	Clustering
	Naive - K-means
	MCL
	Overlap classification

	Assessing results
	Implementation
	Naive clustering implementation
	MCL clustering implementation
	Classifying overlaps

	Results
	Clustering results
	Comparison of MCL edge values

	Discussion
	Conclusion
	Bibliography

