
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS num. 1415

Computing the Error Profiles of Third
Generation Sequencing

Technologies
Lucija Megla

Zagreb, July 2017.

I would like to thank my family and friends for a huge amount of support

during my whole education. Also, I would like to thank Robert Vaser for help during making

of this thesis. Thanks to Li Chenhao for introducing me to the topic of this thesis. Last, but

not least, big thanks to my mentor Mile Šikić for guidance and support.

iii

CONTENTS

1. Introduction 1

2. Prerequisites 3
2.1. Biological terms . 3

2.2. File formats . 4

2.2.1. FASTA format . 4

2.2.2. FASTQ format . 5

2.2.3. SAM format . 5

2.3. Tools . 7

2.3.1. Graphmap . 7

2.3.2. dnadiff . 7

3. Algorithm for computing error profiles of homopolymers 9
3.1. Pseudocode . 10

3.2. Implementation . 13

3.3. Time complexity . 14

3.4. Reproducibility . 14

4. Machine learning: error correction proposal 16
4.1. Supervised learning . 16

4.2. Creating dataset . 17

4.2.1. Feature vectors . 17

4.2.2. Data processing . 17

4.3. Algorithms . 17

4.3.1. Support Vector Machines . 17

4.3.2. Random Forests . 19

4.4. Implementation . 19

4.4.1. train_test_split . 19

4.4.2. GridSearchCV . 20

4.5. Output and altering consensus . 21

iv

4.6. Reproducibility . 21

5. Results 22
5.1. Algorithm for finding error profiles . 22

5.1.1. Escherichia coli r7 and Escherichia coli r9 reads 22

5.1.2. Scerevisiae r9 reads . 22

5.2. Error correction . 25

6. Discussion 27

7. Conclusion 28

Bibliography 30

v

1. Introduction

Rapid development of computer hardware and computer software helped the field of Bioin-

formatics become one of the fastest growing scientific areas of our time. Bioinformatics is a

hybrid field that brings biology and computer science together. It exploits different software

tools and methods in order to address different biological questions and problems.

One of the best known challenges in Bioinformatics is genome sequencing. Genome

sequencing is a process of deciding the precise order of individual nucleotid bases – A (as

Adenyne), T (as Thymine), C (as Cytosine), G (as Guanine) and U (as Uracil) – within DNA

or RNA molecules. In other words, sequencing is translating life’s chemical alphabet into

human alphabet (1).

History of sequencing dates back to 1970s when Fred Sanger developed the first method

for sequencing called Sanger’s method. This method, along with the other methods devel-

oped until early 2000s, is often called First generation sequencing method. Sanger’s method

produced long individual reads with 99.9% accuracy, but on the other hand, was very expen-

sive and impratical. With Human Genome Project, that took place in early 2000s, sequenc-

ing began its rapid development which led to upgraded sequencing techniques called Second

generation sequencing. These methods produced short reads (up to 300 - 400 bp1).

Today, we are slowely introduced to Third generation sequencing. Third generation se-

quencing includes Pacific Biosciences and Oxford Nanopore Technologies. Reads sequenced

by this methods are very long, but also very erroneous, that is, they have lower accuracy than

other methods (between 87% and 97%) (2; 3).

In this thesis we are interested in Oxford Nanopore Technologies, particulary because

they have certain limitations. It is said that these technologies have problems with deter-

mining homopolymer2 lengths, especially when longer homopolymers occur (4). Here, we

found our motivation for this thesis. We developed an algoritham for finding error profiles

of homopolymers in reads aligned to the sequence. Since these errors mostly happen with

Oxford Nanopore Technologies (ONT) (5), the results will mainly focus on analyzing reads

sequenced by ONT. Furthermore, error profiles will be used in machine learning algorithms

1Base pairs: A-T, C-G for DNA; A-U, C-G for RNA.
2Definition is given in Chapter 2.

1

in order to see if it is possible to correct the errors.

This thesis is organized as follows:

In Chapter 2, a quick overview of biological and technical terms will be given. We will

also explain what error profiles are and how reads, reference sequence and consensus se-

quence are connected.

In Chapter 3 there will be an overview of the algorithm developed, along with its pseu-

docode, implementation and complexity.

Chapter 4 will give an overview and short introduction to machine learning alongside

methods that were used to fix errors in homopolymers.

After presentation of the algorithm and machine learning methods that were used, in

Chapter 5 final results will be presented.

After introducing the results, Chapter 6 will give a short discussion in order to argue the

outcome of this thesis.

Chapter 7 will be a conclusion of this thesis, where the work and progress alongside with

possible improvements will be disclosed.

2

2. Prerequisites

Some basic biological and technical terms will be introduced in this chapter for better un-

derstanding of chapters following this section. Firstly, there will be an overview of basic

biological terms that will clarify any ambiguities that may be connected with biological

background. Also, the connection between reference sequence, consensus sequence and

reads will be explained, which is extremely important for understanding following chapters.

Additionally, file formats for storing biological data will be introduced. Last, but not least,

we will mention graphmap and dnadiff, two tools that were needed in certain parts of the

whole process.

2.1. Biological terms

• read - a raw sequence of nucleotides that comes off a sequencing machine

• ONT - Oxford Nanopore Technologies1

• reference sequence - nucleotide sequence assembled by scientists as a representa-
tive example of a species’ set of genes (6).

• consensus sequence - calculated order of most frequent nucleotides found at each

position in a sequence alignment. It represents the results of multiple sequence align-

ments in which related sequences are compared to each other and similar nucleotide

patterns are calculated (7).

• sequence alignment - way of arranging the sequences of DNA, RNA or protein to

identify regions of similarity between the sequences

• homopolymer - polymer composed of the same nucleotides

• sequencing - deciding the precise order of individual nucleotid bases (A,T,C,G,U)

within DNA or RNA molecules.

Reference sequence is the norm. When reads are assembled into a longer sequence and

finally into a consensus, the goal is to reproduce a consensus that is as similar to the reference

1See Chapter 1

3

as possible. Unfortunately, neither sequence process nor assembly process is perfect. That is

why consensus has errors and differs from reference sequence. Particularly, for ONT reads,

these errors happen at homopolymer regions (3). In other words, there must be a way of

determining the magnitude of an error. That is why error profiles are found.

Error profiles are nothing more than the frequency of 3-dimension tuples: (nucleotide,

reference_length, read_length). The 3D tuple denotes that a certain read homopolymer,

built of nucleotide, has aligned to a homopolymer in the reference, where length of a read

homopolymer was read_length and that of reference homopolymer was reference_length.

These error profiles can be useful in process called base calling2. Furthermore, by extending

error profiles with coordinates of a homopolymer in the reference sequence, we were able

to create feature vectors for training machine learning algorithms and alter the consensus in

order to come even closer to the original reference sequence.

As mentioned before, Chapter 3 will explain how error profiles were found and Chapter

4 will explain how feature vectors were made.

2.2. File formats

2.2.1. FASTA format

In bioinformatics, FASTA format is one of the most used file formats for keeping nucleotide

sequences. It is a text-based format where a sequence of nucleotides begins with a single-line

descriptor3 followed by lines of sequence data. An example of FASTA format can be seen in

Figure 2.1.

Figure 2.1: FASTA format example

2process of assigning nucleotides to chromatogram peaks. In other words, base calling is the process by

which an order of nucleotides is inferred (8; 9)
3Single-line descriptor containing a name of the sequence and possibly some general information about the

sequence.

4

2.2.2. FASTQ format

Besides FASTA format, FASTQ format is also a commonly-used text-based format for stor-

ing biological sequences. The difference is that FASTQ format, alongside nucleotide se-

quence, also keeps and its corresponding quality scores. Quality score is an integer mapping

of a probability that the corresponding nucleotide is incorrect (10). Both the sequence letter

and quality score are each encoded with a single ASCII character. An example of FASTQ

format can be seen in the Figure 2.2.

Figure 2.2: FASTQ format example

2.2.3. SAM format

SAM format is a commonly-used text-based format for storing aligned nucleotide sequences

in a series of tab delimited ASCII columns. SAM stands for Sequence Alignment/Map format

and it consists of arbitrary header section and an alignment section. Header lines start with

@ (if they exist). Each alignment line has eleven mandatory fields which contain essential

alignment information and volatile number of optional fields for aligner-specific information

(11). Here we can examine mandatory fields of SAM file

1. QNAME - Name of the read, String

2. FLAG - Combination of bitwise FLAGs describing read or alignment specifics, Int

3. RNAME - Reference sequence name, String

4. POS - 1-based leftmost mapping position of the first matching base (beginning of the

alignment), Int

5. MAPQ - Mapping quality, Int

6. CIGAR - The CIGAR string of the alignment, explained deeply later, String

7. RNEXT - The reference name of the next read, String

5

8. PNEXT - The position of the next read, Int

9. TLEN - Observed length of the template, Int

10. SEQ - The read sequence, String

11. QUAL - ASCII encoded base qualities, String

The important fields for this thesis are POS and CIGAR, as well as optional field that

follows TAG:TYPE:VALUE format, MD tag. Description of POS field mentioned above is

straightforward, but CIGAR string and MD tag need more explanation.

CIGAR string

CIGAR string is a sequence of letters and numbers that describe an alignment of a read to

a reference. When a read is aligned to a reference we can have several cases and the most im-

portant ones are given in a Table 5.3. Regex for CIGAR string is: |([0-9]+[MIDNSHPX=])+,

which means that before every letter is a number denoting how many consecutive times the

operation appears in the alignment. In Figure 2.3, one can examine read alignment to a

reference sequence with CIGAR string (11).

Table 2.1: Important CIGAR string letters/operations

Operation Description

M alignment match

I insertion to the

reference

D deletion from the

reference

S soft-clipping

H hard-clipping

N spliced read

Figure 2.3: Alignment example with CIGAR string

6

MD tag

As mentioned before, MD tag is an optional field with TAG:TYPE:VALUE format. It is

a sequence of letters, numbers and special characters matching the following regex: [0-

9]+(([A-Z]|[̂A-Z]+)[0-9]+)*. The MD field wants to achive SNP/Indel calling4 without

looking at the reference. Unfortunately, in order to be able to reconstruct alignment without

a reference, one must use CIGAR string alongside MD tag (12).

2.3. Tools

2.3.1. Graphmap

Graphmap is a software tool for read alignment (13) and is peculiar because it is targeted at

aligning long, error-prone third-generation sequencing data. Even though it was designed to

handle Oxford Nanopore reads, it is also able to handle a wide range of reads with different

properties (like length and error profiles), which makes it suitable for PacBio read alignment.

Graphmap was used to align reads along reference sequence and consensus sequence.

The output file in SAM format was then used as an input for the algorithm for finding error

profiles, which will be explained in detail in the next chapter.

2.3.2. dnadiff

Dnadiff is a software tool for comparison of two genomes (14). It provides detailed infor-

mation and quantification on diversity between two genomes.

Dnadiff is used after we trained machine learning algorithms to fix the error in homopoly-

mers, so we could verify the difference between our reference genome and our new, altered

consensus. Dnadiff is excelent for this task, because it provides us with precise report. Dnad-

iff outputs many files, but the file that is of interest is *.report file, which provides scores on

average identity between genomes, that is, between reference and altered consensus. De-

tailed method about how we altered consensus will be explained in Chapter 4. An example

of *.report file can be seen in Figure 2.4.

The important fields in *.report file are: TotalBases, AlignedBases and AvgIdentity. Field

TotalBases shows the total length of the reference (left column) and some sequence query

(right column). Sequence query length should be as close as possible to the length of the ref-

erence sequence. Field AlignedBases shows how many bases aligned between the reference

4SNP/Indel calling is a type of next generation sequencing analysis.

7

Figure 2.4: Example of *.report file

sequence and sequence query. Field AvgIdentity shows how similar are two sequences. Both

AlignedBases and AvgIdentity should have high values.

8

3. Algorithm for computing error profiles
of homopolymers

As mentioned before, one of the goals of this thesis was to develop an algorithm that will

manage to find error profiles of homopolymers. The algorithm is not sequence-technology

specific, but the results will be aimed to ONT reads. In Figure 3.1 we can see an example of

error profile described in Chapter 2. Homopolymer in the reference sequence has length =

6, while the homopolymer in read 1 has length = 3. The error profile for this case is: (’A’,

6, 3). Homopolymer in read 2 has length = 5, so the error profile for this case is: (’A’, 6,

5).

Figure 3.1: Homopolymer error example

Homopolymer regions are particulary interesting because third generation sequence tech-

nologies tend to have higher error rates when faced with longer homopolymers. This is espe-

cially true for Oxford Nanopore Technologies. That is why finding homopolymer regions in

the reference and observing homopolymer regions in the reads aligned to the reference can

give us extra information. This information can be used in sequencing methods.

In this chapter, an algorithm for finding error profiles will be discussed.

The algorithm is based on the idea of automaton. It iterates over the main sequence

(reference or consensus sequence), reads aligned to the main sequence and CIGAR string

simultaneously. CIGAR string is an important factor here, because it shows how pointers

should be incremented. MD tag was an option to use instead of CIGAR string, because it

contains information about nucleotides in the reference. That way there would be no need to

load reference sequence in the memory. Unfortunately, in order to use MD tag, one should

9

also use CIGAR string. Parsing both and reconstructing the reference sequence would be

too complex, so loading reference in the memory and using only CIGAR string seemed like

a better solution.

During iteration, four states are interchanging. States track existance of homopolymers

in the read and in the sequence. Their meaning is as follows:

• State.on_on - currently, there exists a homopolymer in the read and in the sequence

• State.off_off - currently, there doesn’t exist a homopolymer in the read nor in the

sequence

• State.on_off - currently, there is a homopolymer in the read, but not in the sequence

• State.off_on - currently, there is a homopolymer in the sequence, but not in the read

3.1. Pseudocode

Algorithm 1 Algorithm for finding homopolymer error profiles
1: procedure HOMOPOLYMER_READ_ERRORS(reference, aligned_reads)

2: reference← genome_preprocessing(reference)

3: error_dict← ()

4: regions_dict← ()

5: ref_max← 0

6: read_max← 0

7: loop:

8: for read in reads do
9: cigar← read.cigar

10: if read.cigar is None then
11: continue;

12: reference_pointer← read.pos

13: read_pointer← 0

14: cigar_pointer← 0

15: read_homopolymer_len← 0

16: reference_homopolymer_len← 0

10

17: ref_homopolymer_begin← 0

18: read_homopolymer_end← 0

19: state← State.off_off

20: while cigar_pointer < len(cigar) do
21: if cigar[cigar_pointer] = ′M ′ then
22: if state == State.off_off then
23: if read_homopolymer_starts then
24: state← State.on_off

25: if reference_homopolymer_starts then
26: state← State.on_on

27: else if reference_homopolymer_starts then
28: state← State.off_on

29: else if state == State.on_off then
30: if read_homopolymer_continues then
31: state← State.on_off

32: if ref_pointer == 0 and ref_homopolymer_starts then
33: state← State.on_on

34: else // save reference homopolymer and read homopolymer

35: state← State.off_off

36: else if state == State.off_on then
37: if ref_homopolymer_continues then
38: if read_pointer == 0 and read_homopolymer_starts then
39: state← State.on_on

40: else // save reference homopolymer and read homopolymer

41: state← State.off_off

42: else if state == State.on_on then
43: if read_homopolymer_continues and ref_homop_continues then
44: state← State.on_on

45: else if read_homopolymer_continues then
46: state← State.on_off

47: else if ref_homopolymer_continues then
48: state← State.off_on

49: else // save reference homopolymer and read homopolymer

50: state← State.off_off

51: else if cigar[cigar_pointer] = ′I ′ then
52: if state == State.off_off then

11

53: if read_homopolymer_starts then
54: state← State.on_off

55: else if state == State.on_off then
56: if read_homopolymer_continues then
57: state← State.on_off

58: else // save reference homopolymer and read homopolymer

59: state← State.off_off

60: else if state == State.off_on then
61: if read_homopolymer_starts then
62: state← State.on_on

63: else if state == State.on_on then
64: if read_homopolymer_ends then
65: state← State.off_on

66: else if cigar[cigar_pointer] = ′D′ then
67: if state == State.off_off then
68: if ref_homopolymer_starts then
69: state← State.off_on

70: else if state == State.on_off then
71: if ref_homopolymer_starts then
72: state← State.on_on

73: else if state == State.off_on then
74: if ref_homopolymer_continues then
75: state← State.on_off

76: else // save reference homopolymer and read homopolymer

77: state← State.off_off

78: else if state == State.on_on then
79: if ref_homopolymer_ends then
80: state← State.on_off

81: else
82: read_pointer ++

83: cigar_pointer ++

12

Update of variables was left out of simplicity. The only important thing to note is:

• cigar[cigar_pointer] =’M’ - both read and reference pointer are refreshed (along

with cigar_pointer).

• cigar[cigar_pointer] =’I’ - only read pointer is refreshed (along with cigar_pointer).

• cigar[cigar_pointer] =’D’ - only reference pointer is refreshed (along with cigar_pointer).

• all other combinations - only read pointer is refreshed (along with cigar_pointer).

3.2. Implementation

SAM file with aligned reads was created using graphmap. The algorithm was written in

Python. The implementation depends on libraries numpy, pysam and biopython. The imple-

mentation of the algorithm is in readerrors.py file. readerrors.py consists of three important

functions: readerrors, make_test_csv and make_freq_csv:

• readerrors - implementation of the algorithm. It accepts two files: sequence file

and SAM file with aligned reads generated with graphmap. It outputs maximum

homopolymer length found, region_dict used in make_test_csv and freq_dict used in

make_freq_csv.

• make_test_csv - function for constructing .csv file with feature vectors used later in

machine learning algorithm.

• make_freq_csv - function for generating .csv file with error profiles.

The results of the algorithm will be discussed in Chapter 5.

13

3.3. Time complexity

The main factors in time complexity are CIGAR string and the amount of reads in the SAM

file. When computing error profiles, algorithm iterates over each read in the SAM file and

for each read iterates over a whole CIGAR string. If amount of reads is denoted with n and

the average length of a CIGAR string is denoted by m, the time complexity of this algorithm

is O(nm). In Figure 3.2 we can see execution time of the algorithm depending on different

amount of reads.

Figure 3.2: Time complexity for different number of reads

3.4. Reproducibility

In order to produce train.csv and predict.csv files needed for machine learning algorithms,

first we had to create SAM files of reads aligned to the reference and reads aligned to the

consensus sequence. After that, we executed polisher.py with SAM files, reference and con-

sensus sequence as an input. Output of polisher.py are train.csv and predict.csv files. This

14

steps with exact commands can be seen in Figure 3.3

Figure 3.3: Steps for getting files for machine learning algorithms

The code is freely available under MIT licence on https://github.com/lucka318/

master_thesis.

15

4. Machine learning: error correction
proposal

Machine learning is currently a hot topic in computer science. Because of technological

improvements, machine learning today hugely differs from machine learning in the past.

Machine learning is a method of data analysis that automates analytical model building.1

In other words, machine learning gives computers the ability to execute tasks without being

explicitly programmed for them. Since machine learning has had huge success in today’s

world, a question arised: could machine learning improve quality of the consensus sequence?

As indicated before, the goal is to have the best approximation of reference sequence as

possible. With help of algorithm for computing error profiles of homopolymers we built

a dataset that will be used for training Support Vector Machines and Random Forests in

order to predict the real length of homopolymer. Then, that homopolymer will be injected in

consensus sequence for improvement.

In the next sections, feature vectors for this particular problem will be described, along

with Support Vector Machines and Random Forests and their Python implementation.

4.1. Supervised learning

For this problem, supervised learning seemed as the best solution. Supervised learning is a

type of machine learning where the task is to inferr a function from labeled training data in

order to be able to map new examples and find out their values (15). In other words, there

exists a training set that includes input data and their corresponding response values. Input

data are often called feature vectors. There are two groups of supervised learning techniques:

regression and classification. In our problem, we used classification, because homopolymer

lengths can be divided between different classes.

Classification is a supervised learning category where data can be separated in classes. It

is usually used for categorical response values.

Regression is a supervised learning category where output values are continuous and

1https://www.sas.com/en_us/insights/analytics/machine-learning.html

16

there is a certain relationship between the values.

4.2. Creating dataset

In order to get training examples that make sense and overall to correctly represent our data,

be it for training, testing or mapping new examples, it is necessary to determine the shape and

characteristics of feature vectors. In machine learning, a feature vector is an n-dimensional

vector of numerical features that represent an object (16).

4.2.1. Feature vectors

In order to create the dataset, it was necessary to determine the look of feature vectors.

Each feature vector denotes a location of homopolymer in the reference (in case of train-

ing set). Length of feature vector (i.e number of features) is n + 1, where n is a maximum

lenght of homopolymer that could be found in the reference sequence. Additionaly, each fea-

ture indicates a length of a homopolymer - from zero to maximum length of homopolymer in

the reference. The value of each feature is a counter which marks how many homopolymers

in the reads, aligned to the particular homopolymer in the reference, had the length denoted

by the feature.

In Figure 4.1 we can see an example of this.

4.2.2. Data processing

After creating set of feature vectors labeled with the right class, we removed feature vectors

where the sum of classes was less than 3. This was particularly because of cross-validation

and split between training and test data. Since there was a huge amount of training data,

classes which had 3 (or less) feature vectors were considered outliers.

4.3. Algorithms

In this section, Support Vector Machines and Random Forests will be explained.

4.3.1. Support Vector Machines

Support Vector Machine or SVM is a supervised machine learning algorithm. SVM is usu-

ally used for classification problems, but it can also be used for regression problems (17).

Also, SVM is an optimization problem. When given labeled training data (which makes it a

17

Figure 4.1: Feature vector example: In the figure there is a reference sequence with homopolymer

AAAAAA and five reads aligned to it with their homopolymer lengths respectively: 3, 5, 6, 3, 6. Let

us say maximum length of homopolymer in the reference is 7, then out feature vector will have 8

features. In this case the feature vector would be: x = 0 0 0 2 0 1 2 0 and y = 6.

supervised machine learning algorithm), the algorithm outputs an optimal hyperplane which

classifies new examples (18). In figure 4.2 there is an example of Support Vector Machine.

In figure 4.2 there is an optimal hyperplane and three support vectors. The goal is to find

a hyperplane that gives the largest minimum distance to the training examples. The largest

minimum distance between the training examples of opposite classes is called a margin.

Thus, optimal hyperplane maximizes the margin of the training data (18).

18

Figure 4.2: Support Vector Machine

Source: http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_

svm/introduction_to_svm.html

4.3.2. Random Forests

Random forest can be used for classification and regression. It is an ensemble learning

method. The main idea behind ensemble methods is to combine weak learners in a group to

form a strong learner (19).

A weak learner in random forest is a decision tree machine learning algorithm. An ex-

ample of decision tree can be seen in Figure 4.3 (20).

In the decision tree, internal nodes are tests on the attributes. A branch is an outcome of

the test, while a leaf node denotes a class label (20).

The random forest algorithm combines decision trees to form a strong learner.

4.4. Implementation

Scikit-learn is a free software Python library for Machine learning (21). From scikit-learn

we used RandomForestClassifier and SupportVectorClassifier for our classification problem.

Also, we used train_test_split from sklearn.model_selection to split our dataset into a train-

ing set and test set. For choosing the best estimator, we used GridSearchCV.

4.4.1. train_test_split

Train_test_split is a method from sklearn.model_selection. It splits dataset into a random

train and test sets. The main parameters that were used in the implementation were (21):

• estimator - machine learning algorithm, we used SVC and RFC.

19

Figure 4.3: Decision tree

• param_grid - map of parameters for an estimator.

• stratify - this attribute makes a split in a way that the proportion of values in the

sample produced is the same as the proportion of values provided to attribute.

4.4.2. GridSearchCV

GridSearch is a class which is used for exhaustive search over specified parameter values

for an estimator (22). Basically, it explores the space of given parameters for a machine

learning algorithm, chooses the best parameters for the estimator and fits the data using

those parameters. he main parameters that were used in the implementation were (22):

• test_size - represents proportion of the dataset to include in the test split. Our test set

was 30% of the whole dataset (test_set=0.3).

• random_state - pseudo-random number generator state used for random sampling.

• n_jobs - number of jobs to run in parallel. We used 12.

• error_score - value to add to the score if an error happens in estimator training. We

used 0.

• iid - shows if data is identically distributed across the folds. In our case that is not

true.

20

4.5. Output and altering consensus

After training the estimators, we aligned the reads to the consensus sequence, so we would

get feature vectors for homopolymers in the consensus. The dataset was then given to the

trained estimators to predict the homopolymer length in the consensus sequence.

When we had new values for homopolymer lengths, we implemented function for al-

tering the original consensus. Basically, new consensus was created and in indices where

homopolymers were, we added homopolymers with new lengths. The implementation is in

alter_consensus.py

4.6. Reproducibility

In order to reach the altered consensus, first step is to train machine learning algorithms on

train.csv file. This file was one of the output files from polisher.py. This file was made out of

reads aligned to the reference sequence. After training phase, we predicted response values in

predict.csv file. Data in predict.csv file came from reads aligned to the consensus sequence.

The output of this phase are two .csv files: predict_SVM.csv and predict_RFC.csv. These

two files contain predicted homopolymer lengths for consensus sequence. The last step is

to call alter_consensus.py to alter the consensus. Then, we get two new, altered consensus

sequences that have to be compared to the reference sequence in order to see how they dffer

from the old consensus and to see qhich classifier preformed better. This steps with exact

commands can be seen in Figure 4.4.

Figure 4.4: Steps to get altered consensus

The code is freely available under MIT licence on https://github.com/lucka318/

master_thesis.

21

5. Results

In this chapter we will present our results, give a comparison between classifiers and see

which one is better for our problem. In the next chapter we will discuss the given results.

5.1. Algorithm for finding error profiles

One of the tasks of this thesis was to compute the error profiles of homopolymers. We com-

puted error profiles for escherichia coli r7 reads, escherichia coli r9 reads and scerevisiae

reads. All reads were aligned to the reference and to the consensus and were sequenced by

Oxford Nanopore Technologies.

5.1.1. Escherichia coli r7 and Escherichia coli r9 reads

E. coli r7 and E. coli r9 reads are reads that are sequenced with different nanopore chemistries.

The error profiles for E. coli r7 reads aligned to E. coli reference sequence can be seen in

Figure 5.1. Every figure shows one class of homopolymer length found in the reference and

the frequency of homopolymer lengths in the reads that were aligned to the homopolymer in

the reference. What is interesting in these error profiles is that we can see how base caller

cannot predict homopolymers longer than 6 when sequencing reads. If we take a look at

Figure 5.1g or Figure 5.1h, there were no homopolymers in the reads that were longer than

6, even though length of homopolymer in the reference was 8 and 9 respectively.

In Figure 5.2 we can see error profiles for E. coli r9 reads aligned to E. Coli reference

sequence. What we can notice is that r9 nanopore technology in case of E. coli cannot base

call homopolymers longer than 5, which is really interesting to see.

5.1.2. Scerevisiae r9 reads

The error profiles for Scerevisiae ONT r9 reads aligned to Scerevisiae reference sequence

can be seen in Figure 5.3. Since there are more different homopolymer lengths in scerevisiae

than in E.coli, some figures were ommited. In case of Scerevisiae, we can observe that base

caller is not consistent when determining homopolymer lengths. It base calles many dif-

22

(a) Length of reference homopolymer equals 2 (b) Length of reference homopolymer equals 3

(c) Length of reference homopolymer equals 4 (d) Length of reference homopolymer equals 5

(e) Length of reference homopolymer equals 6 (f) Length of reference homopolymer equals 7

(g) Length of reference homopolymer equals 8 (h) Length of reference homopolymer equals 9

Figure 5.1: Error profiles for E. coli r7 reads aligned to E. coli reference

23

(a) Length of reference homopolymer equals 2 (b) Length of reference homopolymer equals 3

(c) Length of reference homopolymer equals 4 (d) Length of reference homopolymer equals 5

(e) Length of reference homopolymer equals 6 (f) Length of reference homopolymer equals 7

(g) Length of reference homopolymer equals 8 (h) Length of reference homopolymer equals 9

Figure 5.2: Error profiles for E. coli r9 reads aligned to E. coli reference

24

ferent homopolymer lengths, which can be problematic during training of machine learning

algorithms.

5.2. Error correction

Table 5.1: Error correction results for E. Coli.r7

Dnadiff attributes Reference Before1 SVC2 RFC3

TotalBases 4641652 4632058 4640821 4647273

Aligned bases - 4632055 4640810 4647267

AvgIdentity - 99.32 99.49 99.25

Table 5.2: Error correction results for E. Coli.r9

Dnadiff attributes Reference Before4 SVC5 RFC6

TotalBases 4641652 4604706 4627472 4619919

Aligned bases - 4604705 4627470 4619919

AvgIdentity - 98.76 98.84 98.99

Table 5.3: Error correction results for Scerevisiae

Dnadiff attributes Reference Before7 SVC8 RFC9

TotalBases 12157105 12167721 12701510 12688138

Aligned bases - 1622288 96885 109079

AvgIdentity - 96.75 94.65 94.52

3Results of the original consensus
3Support Vector Classifier
3Random Forest Classifier

25

(a) Length of reference homopolymer equals 4 (b) Length of reference homopolymer equals 6

(c) Length of reference homopolymer equals 9 (d) Length of reference homopolymer equals 12

(e) Length of reference homopolymer equals 15 (f) Length of reference homopolymer equals 18

(g) Length of reference homopolymer equals 22 (h) Length of reference homopolymer equals 26

Figure 5.3: Error profiles Scerevisiae r9 reads aligned to Scerevisiae reference

26

6. Discussion

In previous chapter we saw the error profiles of homopoylmers and how consensus can be

corrected using machine learning. In Figures 5.1, 5.2 and 5.3 it can clearly be seen how

base caller of Oxford Nanopore Technologies has problems with determining the length of

homopolymers that are greater than 6. Thus, when consensus is assembled, there is a low

chance that the length of a longer homopolymer will be correctly assembled and resolved.

To fix this problem we tried using machine learning as the solution. In case of E.coli,

machine learning managed to fix the consensus for the better. E.coli as a species did not

have homopolymers longer that 10 which probably was a mitigating circumstance, because

it is easier to generalize over a smaller group of possibilities. In case of E. coli r7 SVC

managed to increase AvgIdentity for 0.17% and increase size of AlignedBases for 8763, that

is, consensus came closer to refrence’s number of AlignedBases. On the other hand, RFC

did not show good results.

In the case of E. coli r9, RFC had better results than SVC, but both managed to improve

older consensus. SVC fixed the AvgIdentity for 0.08%, while RBC fixed AvgIdentity for

even 0.23%. Both RFC and SVC increased number of AlignedBases and came closer to

reference’s number of AlignedBases. On the other scerevisiae did not have good results. The

case with scerevisiae is that it has homopolymer lengths up to 45. Since base caller cannot

succesfully predict lengths greater than 6, this leaves a huge space for erroneous feature

vectors. For example, as we can see in Figure 5.3h, even though the length of a homopolymer

in the reference was 24, a great majority of reads had mixed homopolymer lengths, without

any statistical trends in it. This was probably one of the reasons why machine learning could

not fix the errors that happened.

When we compare SVC and RFC estimators, both gave good results in case of E. coli.

Since SVC managed to improve both E. coli.r7 consensus and E. coli.r9 consensus, it could

be a better estimator than RFC.

27

7. Conclusion

In this thesis we were interested in Oxford Nanopore Technologies for sequencing genome,

particulary because they have certain limitations. It is said that these technologies have prob-

lems with determining homopolymer lengths, especially when longer homopolymers occur

(4). That is why one of the goals was to develop an algorithm for finding error profiles of

homopolymers.

The algorithm is based on the idea of automaton. It iterates over the main sequence

(reference or consensus sequence), reads aligned to the main sequence and CIGAR string

simultaneously. The main factors in time complexity of this algorithm are CIGAR string and

the amount of reads in the SAM file. The time complexity of this algorithm is O(nm), where

the amount of reads is denoted by n and the average length of a CIGAR string is denoted by

m. In Figure 3.2 we can see execution time of the algorithm depending on different amount

of reads.

The next task was to propose a way to improve the consensus assembled from ONT reads.

Since machine learning is very popular, we decided to try with classification algorithms. We

created feature vectors that represented a location of homopolymer in the reference (in case

of a training set). Length of a feature vector (i.e number of features) was n + 1, where n is a

maximum lenght of homopolymer that could be found in the reference sequence. The value

of each feature is a counter which marks how many homopolymers in the reads, aligned to

the particular homopolymer in the reference, had the length denoted by the feature.

In Figure 4.1 we saw an example of this.

We decided to use SupportVectorClassifier and RandomForestClassifier from scikit Python

library as our implementation for machine learning. SupportVectorClassifier, on average,

had better results than RandomForestClassifier.

In case of Escherichia coli, we managed to improve the consensus, but in case of Scere-

visiae did not. The problem with Scerevisiae reads is that read homopolymers had very

irregular lengths, which probably is not favorable regarding machine learning.

Escherichia coli results can be a starting point in applying machine learning to sequenc-

ing problems. Next step could be to try and apply regression to this problem. Also, since

Scerevisiae had problems with read homopolymers, it would be compulsory to further ex-

28

plore the dataset and feature vectors and try to model homopolymer features in a way that

would be more robust and less sensitive to base caller’s possibilities.

29

BIBLIOGRAPHY

[1] Genome News Network. Genome sequencing. J. Craig Venter Institut, 2003.

[2] Šikić M. and Domazet-Lošo M. Bioinformatika, 2013.

[3] Wikipedia. Dna sequencing. https://en.wikipedia.org/wiki/DNA_

sequencing. [Online; accessed 12/06/2017].

[4] Ip L.C, Loose M., and J.R. Tyson. Minion analysis and reference consortium: Phase 1

data release and analysis. 2015.

[5] Robison K. Homopolymers and other recurring topics. http://omicsomics.

blogspot.hr/2016/11/, 2016. [Online; accessed 12/06/2017].

[6] Wikipedia. Reference genome. https://en.wikipedia.org/wiki/

Reference_genome. [Online; accessed 15/06/2017].

[7] Wikipedia. Consensus sequence. https://en.wikipedia.org/wiki/

Consensus_sequence. [Online; accessed 20/06/2017].

[8] Genohub. Base calling. https://en.wikipedia.org/wiki/Consensus_

sequence. [Online; accessed 20/06/2017].

[9] Dnabaser. Base calling for dna sequence/chromatogram files. http:

//www.dnabaser.com/help/snp%20mutation%20detection/base%

20caller.html. [Online; accessed 20/06/2017].

[10] Wikipedia. Fastq format. https://en.wikipedia.org/wiki/FASTQ_

format#Quality. [Online; accessed 26/06/2017].

[11] The SAM/BAM Format Specification Working Group. Sequence alignment/map for-

mat specification. 2017.

[12] Biostars. Is it possible to reconstruct alignment from cigar and md strings alone?

https://www.biostars.org/p/112382/.

30

[13] Sikic M. and Sovic I. Graphmap. https://github.com/isovic/graphmap.

[14] S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot, M. Shumway, C. Antonescu, , and S.L.

Salzberg. Dnadiff. https://github.com/garviz/MUMmer/dnadiff.

[15] Wikipedia. Supervised learning. https://en.wikipedia.org/wiki/

Supervised_learning. [Online; accessed 21/06/2017].

[16] Pang H., Moore K., and Padmanabha A. Feature vector. https://brilliant.

org/wiki/feature-vector/. [Online; accessed 21/06/2017].

[17] Ray S. Understanding support vector machine algorithm from examples

(along with code). https://www.analyticsvidhya.com/blog/2015/10/

understaing-support-vector-machine-example-code/. [Online; ac-

cessed 22/06/2017].

[18] OpenCV. Introduction to support vector machines. http://docs.opencv.org/

2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_

svm.html. [Online; accessed 22/06/2017].

[19] Blackwell A. A gentle introduction to random forests, en-

sembles, and performance metrics in a commercial sys-

tem. http://blog.citizennet.com/blog/2012/11/10/

random-forests-ensembles-and-performance-metrics. [Online;

accessed 22/06/2017].

[20] Lanzi P.L. Data mining and text mining: Classification: Decision

trees. http://blog.citizennet.com/blog/2012/11/10/

random-forests-ensembles-and-performance-metrics. [Online;

accessed 22/06/2017].

[21] Cournapeau D. scikit-learn. http://scikit-learn.org/stable/. [Online;

accessed 25/06/2017].

[22] Cournapeau D. Gridsearchcv. http://scikit-learn.org/stable/

modules/generated/sklearn.model_selection.GridSearchCV.

html. [Online; accessed 25/06/2017].

31

Computing the Error Profiles of Third Generation Sequencing Technologies

Abstract

When reads are assembled into a longer sequence and finally into a consensus, the goal

is to reproduce a consensus that is as similar to the reference as possible. Oxford Nanopore

Technologies have issues when sequencing homopolymers. That is why we developed a

tool where we found error profiles of homopolymers. Using error profiles we trained ma-

chine learning algorithms to predict the real length of homopolymers. Then we altered the

consensus accordingly, in order to reach reference sequence.

Keywords: homopolymers, error profiles, Oxford Nanopore Technologies, machine learn-

ing

Algoritam za računanje profila pogreške za tehnologije za sekvenciranje treće
generacije

Sažetak

Kada se očitanja sastavljaju u duži redoslijed nukleotida i napokon u konsenzus, cilj

je reproducirati konsenzus koji je što sličniji referenci. Oxford Nanopore Technologies

imaju problema kod sekvenciranja homopolimera. Stoga je razvijen alat koji računa pro-

file pogreške homopolimera. Koristeći profile pogrešaka, istrenirani su algoritmi strojnog

učenja kako bi predvidjeli stvarnu duljinu homopolimera. U skladu s tim, konsenzus je mi-

jenjan kako bi bio što sličniji referenci.

Ključne riječi: homopolimeri, profili pogrešaka, Oxford Nanopore Technologies, strojno

učenje

