

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS ASSIGNMENT No. 1418

Classification of Large-Scale Biological
Annotations Using Word Embeddings
Derived from Corpora of Biomedical

Research Literature

Adriano Baćac

Zagreb, June 2017.

Replace with original assignment page

Assignment text:

Document classification tasks are commonly addressed using a simple bag-of-words

representation, which produces very sparse data sets and ignores word semantics.

Word embeddings can provide rich contextual information for words. Recent analyses

suggest that they may increase predictive accuracy on certain text classification tasks.

Since embeddings are typically trained on broad, general-purpose text libraries, they

might not be appropriate for specialized corpora. In this work custom word

embeddings for scientific literature in the biomedical domain, and additionally more

subject-specific subsets, will be trained that can result in representation that better

encodes semantic meaning. Novel embedding models will next be used to represent

words in biomedical texts, and as an input to recurrent neural networks. These models

will be further used to train classifiers for discriminating large-scale biological

annotations, such as phenotypes and gene functions.

I wish to thank my mentor Mile Šikić for support and guidance during all my years

being a student.

I would also like to thank Fran Supek and Maria Brbić from the Ruđer Bošković

Institute in Zagreb for numerous suggestions and advice that helped shape this work.

Special thanks go to my friends and family members that sacrificed their gaming nights

so that I could use their GPUs.

Table of Contents

Introduction ... 1

1. Word embeddings .. 2

1.1. Word2vec... 2

1.1.1. Continuous Bag of Words (CBOW) .. 3

1.1.2. Skip-Gram Model .. 4

1.2. GloVe .. 5

2. Recurrent neural networks ... 6

2.1. Long Short-Term Memory .. 7

3. Training word embeddings .. 9

3.1. Corpora preparation ... 9

3.2. Determining subset corpora ... 11

3.3. Determining embedding vector size .. 12

4. Phenotypic trait classification dataset ... 13

4.1. Baseline model .. 13

5. Document embedding .. 15

5.1. Aggregation of word embeddings ... 15

5.1.1. Aggregation function ... 15

5.1.2. Weighting word embeddings ... 16

5.2. Document embedding using LSTM .. 17

5.2.1. Architecture ... 17

5.2.2. Hyperparameters .. 19

6. Performance and comparison with baseline .. 21

6.1. Aggregation methods ... 21

6.1.1. MinMaxSum of norms .. 22

6.1.2. Weighted embeddings ... 23

6.2. LSTM method ... 24

7. Influence of the specificity of corpora ... 25

7.1. Corpus specificity test on NCBI+BacMap phenotypic traits 25

7.1.1. MinMaxSum of norms .. 25

7.1.2. Weighted embeddings ... 26

7.1.3. Simulation experiments to determine the influence of corpus size and

specificity on predictive accuracy ... 27

7.2. Corpus specificity test on highly specific phenotypic traits 30

7.2.1. Results ... 31

8. Model complementarity ... 32

8.1. MinMaxSum of norms .. 33

8.2. Weighted embeddings ... 34

9. Conclusion ... 35

Bibliography .. 36

1

Introduction

In a natural language processing problem, such as document classification, it is common to

encode words using one-hot vectors. Each word is represented by a vector the size of the

vocabulary 𝑉, with all values equal to 0, except for a single 1 on the position that encodes

the word. This approach results in wide and sparse word representations. Using word

embeddings provides more information, as words similar by context have similar

embeddings, while in the one-hot encoding the distance between all words is the same

regardless of their similarity. For example, “ocean” and “sea” are similar words and would

have similar embeddings, but with one-hot vectors this information is not made explicit.

In this work, we address the task of microbial phenotypes prediction from scientific papers.

Since these papers consist of scientific terms and expressions, word embeddings trained on

general-purpose libraries, such as tweets or news articles, may not be appropriate. One

question we aimed to answer is whether it is better to use a larger, more general corpus, or a

smaller, but more specific corpus for learning word embeddings. For this reason, custom

word embeddings have been trained on publicly available scientific literature and its more

subject-specific subsets related to biology and one particular branch thereof (here,

microbiology). To compare which embedding is more suited for the problem at hand several

methods for determining document embeddings from word embeddings have been tested. A

simple, yet popular choice, is to aggregate word embeddings into a single document

embedding. However, the problem with this approach is that it ignores word order. To

capture this information, the hidden state of a single layer LSTM was used to represent a

document.

The first chapter gives a quick overview of used word embeddings. The second chapter

introduces recurrent neural networks. The third chapter explains how the corpora for training

embeddings were prepared and the way the embedding size was determined. In the fourth

chapter, the phenotypic trait classification dataset is presented alongside a baseline model.

The fifth chapter introduces two ways to represent document embeddings, by aggregating

word embeddings and by using a recurrent neural network. In the sixth chapter, the proposed

models are compared to a baseline bag-of-words classifier. The seventh chapter explores if

there is a connection between model performance and the corpus the embedding was trained

on. The eight chapter explores if there is complementarity between the baseline and the

proposed models. The ninth, and final chapter, brings the conclusion.

2

1. Word embeddings

Recent word embedding models [1] [2] represent words as dense 𝑁-dimensional vectors that

capture linguistic regularities without using any external annotations. Not only are similar

words grouped together, which is an improvement over one-hot vectors, but the embedding

model also encodes complex relationships, as shown in Figure 1-1.

Figure 1-1 from [1] example of an embedding model learning the relationship between countries

and their capital city

One of the most often examples used when talking about word embeddings is that the expression

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(king) − 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(man) + 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑓𝑒𝑚𝑎𝑙𝑒) results in a vector closest to

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑞𝑢𝑒𝑒𝑛).

1.1. Word2vec

Word2vec is one of the most popular approaches to word embeddings offering high-quality

word embeddings at a low computational cost [3] [1] [4].

It is a “shallow” model, having only a single hidden layer. The number of neurons in the

input layer equals the number of words in the vocabulary. The hidden layer size is

determined by the desired embedding vector size, and the output layer is the same size as the

3

input layer. Assuming we have 𝑉 words in the vocabulary and desire an embedding size of

𝑁, input to hidden matrix 𝑊𝐼 would have shape 𝑉×𝑁 and the output matrix 𝑊𝑂 would have

the inverted shape of 𝑁×𝑉. Input is encoded as a one-hot vector, where all the values are 0

except for one, encoding the word. Because of this, the hidden layer values will always be

equal to one of the rows from 𝑊𝐼, the embedding of the input word, effectively working as

a lookup table. Word2vec uses softmax to transform output values to have a sum of 1, so that

they may be interpreted as probabilities, as the training is done by predicting connected

words.

For example, let us say we want to learn the relationship between words “kangaroo” and

“jump”. In that case when we use 𝑜𝑛𝑒ℎ𝑜𝑡("kangaroo") as input and expect a high

probability for “jump”, our target word, in the output. Error vector is computed by

subtracting the probability vector output from the one-hot vector of target word.

All weights are trained using stochastic gradient descent and backpropagation.

1.1.1. Continuous Bag of Words (CBOW)

The method described in the previous chapter is for learning relationships between a pair of

words, in our example “kangaroo” and “jump”. Instead of using a single word to predict its

pair, CBOW [3] uses the context of a word that is words in a neighborhood of the target

(output) word. Context is taken without regard to word order, which is where the name bag-

of-words comes from. For each target word, 𝐶 words before and after it are used.

Figure 1-2: Continuous Bag of Words with context 𝐶 = 2

4

Previously defined model is changed so that multiple inputs, each size of 𝑉, are projected

using the same projection matrix 𝑊𝐼 and then averaged, making the value of the hidden layer

the average embedding of words defining the context.

ℎ =
1

2𝐶
𝑊𝐼 ∑ 𝑤𝑡+𝑐

−𝐶≤𝑐≤𝐶,𝑐≠0

(1)

𝑤𝑡 = 𝑊𝑂
𝑇ℎ

The rest of the method is unchanged.

1.1.2. Skip-Gram Model

Another approach to training word2vec is called Skip-Gram [3] [4]. A single input word is

used to predict multiple target words (the exact opposite of CBOW). For each target word,

a context is defined as the neighborhood of that word. Skip-gram tries to predict each context

word from its the target word, effectively repeating the pairwise training for each context

word. The training objective is to maximize the log probability

1

𝑇
∑ ∑ log 𝑝(𝑤𝑡+𝑐|𝑤𝑡)

−𝐶≤𝑐≤𝐶,𝑐≠0

𝑇

𝑡=1

(2)

where 𝑝(𝑤𝑡+𝑐|𝑤𝑡) is defined with softmax, the output of neural network. Several methods

have been developed to improve the computational cost of training and the quality of the

word embedding, such as Hierarchical Softmax [1], Negative Sampling [1] [4] and

Subsampling of Frequent Words [1].

Figure 1-3: Skip-Gram model with context 𝐶 = 2

5

1.2. GloVe

While Word2vec relies on a local context of a window to learn word embeddings, GloVe [2]

directly uses the global word to word co-occurrence (name derived from “Global Vectors”).

Word co-occurrence is stored in the matrix X, where 𝑋𝑖𝑗 is the number of times word

𝑗 appears in the context of word 𝑖. When learning word co-occurrence from the corpus with

𝑉 distinct words a fixed number of words around the target word are taken as context. Then,

for each word 𝑘 in the context, the co-occurrence matrix gets updated relative to the distance

of word 𝑘 to the target word 𝑖 in the context window.

𝑋𝑖𝑘 = 𝑋𝑖𝑘 +
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑘)
(3)

This makes it so the closest words have the greatest impact in the later stages of training.

The probability that word 𝑗 will be found in the context of word 𝑖 can be expressed as:

𝑃𝑖𝑗 =
𝑋𝑖𝑗

∑ 𝑋𝑖𝑘
𝑉
𝑘=0

(4)

The main idea of this embedding method is that for two unrelated word 𝑖 and 𝑗, and a word

𝑘 related to 𝑖 but unrelated to 𝑗, the ratio
𝑃𝑖𝑘

𝑃𝑗𝑘
 is high, as 𝑘 appears in the context of 𝑖 more

often than in the context of 𝑗. From this idea, a constraint is defined for a pair of word vectors

𝑣𝑖 and 𝑣𝑗 [2]:

𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 = log(𝑋𝑖𝑗) (5)

 For the training of GloVe word embeddings, a weighted least squares error was proposed in

[2]. By using a conventional least square error all word co-occurrence would be weighted

equally and very frequent words, such as the, would affect the training the most.

𝐽 = ∑ ∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − 𝑙𝑜𝑔(𝑋𝑖𝑗))

2
𝑉

𝑗=1

𝑉

𝑖=1

(6)

The weighting function 𝑓 is defined by the authors as:

𝑓 = {(
𝑋𝑖𝑗

𝑋𝑀𝐴𝑋
)

𝛼

 𝑖𝑓 𝑋𝑖𝑗 > 𝑋𝑀𝐴𝑋

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

In the original paper, they used 𝑋𝑀𝐴𝑋 = 100 and 𝛼 =
3

4
, as those values have empirically

been shown to work well.

6

2. Recurrent neural networks

Traditional feed-forward neural networks can have multiple vector inputs, as was shown

with CBOW previously, but they accept only a fixed number of inputs, and do not take the

order of the vectors into account. To be able to process varying length input vectors and

capture the order information, a recurrent neural network (RNN) is used. RNNs have an

additional recurrent connection in the hidden layer and can be viewed as a feed-forward

network that remembers its hidden layer from the previous iteration and uses it to calculate

new hidden layer values. This allows the output to be based not only on the current input but

all past inputs.

Figure 2-1: structure of RNN, before and after unrolling

A recurrent node has two inputs, the one fed to the network 𝑥𝑡 and the hidden state of the

previous iteration ℎ𝑡−1. The hidden state is used to transfer previous information and is

defined as

ℎ𝑡 = 𝑓(𝑊ℎℎℎ𝑡−1 + 𝑊𝑖ℎ𝑥𝑡 + 𝑏ℎ) (8)

where 𝑏ℎ is the hidden layer bias, 𝑊ℎℎ is the hidden-to-hidden weights matrix and 𝑊𝑖ℎ input-

to-hidden weights matrix. Function 𝑓 is a nonlinear, differentiable function, usually 𝑡𝑎𝑛ℎ.

The output of the network is defined as

𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜) (9)

with 𝑊ℎ𝑜 being the hidden-to-output matrix and 𝑏𝑜 the output bias. The training goal is to

minimize the loss function, commonly chosen to be cross-entropy loss. With 𝑦 as the true

label for iteration 𝑡 and 𝑜 and the output, cross-entropy loss is given by

7

𝐿(𝑦, 𝑜) = − ∑ 𝑦𝑖 log 𝑜𝑖

𝑖

(10)

Recurrent neural networks are trained using backpropagation through time (BPTT) which is

the same as tradition backpropagation on an unraveled network. In theory, RNN could learn

long-term connections, but because the gradient of the loss function decays exponentially

with time, in practice it has a problem with capturing long-term connections.

2.1. Long Short-Term Memory

 Long Short-Term Memory (LSTM) [5] [6] introduces more complex hidden state units

consisting of memory cells and multiplicative update gates. The idea behind the architecture

is to allow information to travel unchanged from past events, enabling the learning of long-

term connections.

The information contained in the cell state is changed using three gate layers:

• Forget gate 𝑓𝑡

• Input gate 𝑖𝑡

• Output gate 𝑜𝑡

Each gate depends on the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡 and has a

specific purpose in controlling the information from and to the memory.

Figure 2-2 from [6] Structure of LSTM hidden unit neuron

8

The forget gate 𝑓𝑡 determines what information should be removed from the memory cell 𝐶𝑡

which is done with element-wise multiplication of the previous memory cell 𝐶𝑡−1. This

produces a memory state with some values diminished, which will be annotated as 𝐶𝑡−1
(𝑓)

 .

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓⟨ℎ𝑡−1|𝑥𝑡⟩ + 𝑏𝑓) (11)

𝐶𝑡−1
(𝑓)

= 𝑓𝑡 ∘ 𝐶𝑡−1 (12)

New potential memory state 𝐶𝑡
′ is regulated with the input gate 𝑖𝑡 so that the memory state

𝐶𝑡−1
(𝑓)

 is updated with a selected part of the information 𝐶𝑡
(𝑖)

.

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖⟨ℎ𝑡−1|𝑥𝑡⟩ + 𝑏𝑖) (13)

𝐶𝑡
′ = tanh(𝑊𝑐⟨ℎ𝑡−1|𝑥𝑡⟩ + 𝑏𝑐) (14)

𝐶𝑡
(𝑖)

= 𝑖𝑡 ∘ 𝐶′
𝑡 (15)

After removing part of the former information and adding new information 𝐶𝑡
(𝑖)

, value of the

new memory state 𝐶𝑡 is finally

𝐶𝑡 = 𝐶𝑡−1
(𝑓)

+ 𝐶𝑡
(𝑖) (16)

Output gate determines which information from the memory cell should be used in the

hidden state ℎ𝑡. This is to prevent the influence of unwanted stored

information.

 𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜⟨ℎ𝑡−1|𝑥𝑡⟩ + 𝑏𝑜) (17)

 ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝐶𝑡) (18)

Unlike RNN, where information from past iterations travels by matrix multiplication,

causing exploding, or vanishing gradients, in LSTM it travels linearly, allowing the network

to learn long-term connections.

9

3. Training word embeddings

Both Word2vec [3] and GloVe [2] have the capacity to learn word embeddings with encoded

semantic meaning from unlabeled data. For the task of classifying phenotypic traits, both

Word2vec and GloVe were trained on the publicly available “biomedical and life sciences

journal literature” repository PubMed Central (PMC) [7], obtained from their FTP site [8].

If not specifically mentioned, all code was written in Python [9], as it has all the required

packages and bindings available, not only for the preprocessing but also for training

Word2vec [10] and GloVe [11] embeddings.

3.1. Corpora preparation

The entire PMC corpus is separated alphabetically into four files and available in two

formats. The original XML format, containing not only the article text but also all

information about the article, such as formatting, chapters names, and tables. The other

available option was a text file with the article text already extracted.

 Although the already preprocessed text files were available, the abstract was missing, and

there was no way to distinguish when the paper ended, and references began. For this reason,

the text was extracted from the XML format.

Since Word2vec uses word context to create word-pairs which are used in training and

GloVe uses it to generate the word co-occurrence matrix 𝑋𝑖𝑗, all tables and the references

were removed from the XML file. In tables, words are mostly used as headers and the context

is determined by table cells, making those words unfit for training word embeddings. If the

table does consist of words, their context is multi-dimensional and is hard to capture so, to

not create false word context, tables were removed altogether. References were removed as

author and paper names are numerous and the structure is predefined by the referencing

standard, which is not relevant for the problem.

All other text was extracted from the XML format using the beautifulsoup4 package

in Python.

10

def nxml2txt(xml):

 soup = BeautifulSoup(xml, features="xml")

 body = soup.find('body')

 for table in body.find_all("table"):

 table.extract()

 for xref in body.find_all("xref"):

 xref.extract()

 pagetxt = [t.strip() for t in body.findAll(text=True)]

 return " ".join(pagetxt)

Code 1 Function for text extraction from XML format

The context of a word is interrupted with the ending of the sentence. To make certain that

word context was restricted by the sentence, the text was split into sentences using the

sent_tokenize function found in the nltk package [12]. For each sentence, all

symbols were replaced with white spaces, except for dash “-” which was removed as it is

mostly used to connect two relevant words, such as “Alpha-Lipoic Acid”. All numbers have

also been removed, and Unicode characters have been replaced with closest matching ASCII

characters; ‘ü’ was replaced with ‘u', ‘𝛼’ with ‘a’ and so on. Finally, all English stop words

(the, and, through, etc.), as defined in the nltk package, were removed, as they hold no

relevant information for the problem of document classification.

Remaining words were stemmed using the nltk implementation of the Porter Stemming

algorithm [13] because the volume of the training corpus was likely not enough to learn

different tenses of the same word or relationships, such as plurality. The resulting word stem

might not be a real word (temptations → temptat) as the algorithm uses predefined suffix

rules, but it will appear in the same context as the original word, and that is sufficient for

training word embeddings.

11

3.2. Determining subset corpora

More subject-specific subsets related to biology and microbiology were selected using

MeSH (Medical Subject Headings) categories [14]. Python package biopython [15] was

used to for automated querying of PubMed Central (PMC) articles by MeSH terms. The

query returned a list of PMC ids, which could be mapped to PMC articles. For comparing

word embedding by specificity, several corpora were used:

• All – entire PMC article dataset – 1.5M articles

• Middle – subset of PMC articles related to biology – 374K articles

• Specific – subset of PMC articles related to microbiology – 76K articles

Each query was in the format:

open access[filter] AND („<term1>“[MeSH] OR „<term2>“[MeSH] OR ...)

A subset of approximately 76K PubMed Central articles from the field of microbiology,

further referred as “Specific corpus”, have been selected with the following MeSH terms:

• Archaea [B02]

• Bacteria [B03]

• Microbiological Phenomena [G06]

• Microbiology [H01.158.273.540]

• Bacterial Structures [A20]

Its superset, further referred as “Middle corpus”, consisted of 374K articles and encompassed

articles from the field of biology. Three additional MeSH terms were used:

• Biological Phenomena [G16]

• Biological Science Disciplines [H01.158]

• Cells [A11]

12

3.3. Determining embedding vector size

To determine embedding vector size, word embeddings quality was tested using top 20

ranked words in 113 manually curated groups obtained using non-negative matrix

factorization (NMF) obtained from [16]. These words are co-occurring terms found in

multiple microbiological corpora. Some words, such as beer, lactic and spoilage, were

grouped together as lactic acids are responsible for spoiling beers, a connection that would

not be present in corpora not related to biology. Although these words are not directly related,

they do appear in similar articles, and they should be grouped closer together than random

words.

The distance of word embeddings was calculated between word pairs within the group and

between grouped words and random words. Mann-Whitney U-Statistic was calculated on

the two distance distributions and transformed into an AUC score using the following

formula:

𝑎𝑢𝑐 =
𝑈

𝑁1𝑁2

(19)

where 𝑈 is the value of the U-statistic and 𝑁1 and 𝑁2 are the sizes of distributions.

Figure 3-1 performance of different embedding sizes on the task of grouping similar topic terms

This test was run with the main corpus and its larger subsets, Middle and Specific, on

different embedding sizes 𝑒 ∈ {10, 20, 50, 100, 300}. GloVe performed significantly better

than Word2vec, as can be seen on Figure 3-1 (note the different x-axis scale for Word2vec

and GloVe). Furthermore, larger embedding sizes generally achieve better results. To reduce

the parameter space that needed to be searched in further testing, it was decided to consider

only embedding sizes 𝑒 ∈ {100, 300}.

13

4. Phenotypic trait classification dataset

An existing dataset of labeled articles [16] was used. It consists of texts from six textual

resources:

• Wikipedia

• Hamap

• MicrobeWiki

• PubMed Central publications

• PubMed abstracts

• mixed collection of smaller resources

Each text document maps to a taxonomy id (tax id) via its filename, formatted as

<name>__(<tax id>).txt, where each tax id is associated with a single species. Set

of phenotypes was gathered from the ProTraits database, which collected them from various

sources [16], most notable for this work being the merged phenotypic traits from NCBI and

BacMap. They are widely used and have the largest amount of tax ids associated with them.

Text processing was done in the same manner as in Section3.1, without the extraction from

XML and splitting into sentences. Because phenotypic traits were matched with tax ids and

not documents, all files associated with the same tax id were concatenated for each source.

4.1. Baseline model

In a bag-of-words representation, each document is encoded into a vector of length 𝑉, where

𝑉 is the number of unique words in the corpus. Values are simply the number of times a

word appears in the document. An improvement over this approach is to weight each word

𝑤 in a document 𝑑 by its frequency and rarity:

𝑡𝑓𝑖𝑑𝑓(𝑤, 𝑑) = 𝑡𝑓(𝑤, 𝑑) ∗ 𝑖𝑑𝑓(𝑤) (20)

Frequency of the word in the document 𝑡𝑓(𝑤, 𝑑) is multiplied by the inverse percentage of

documents containing that word 𝑖𝑑𝑓(𝑤), also known as inverse-document-frequency (tf-

idf).

All documents were encoded using a bag-of-words approach with tf-idf weighting. A binary

linear support vector machine (SVM) classifier, from the sklearn [17] package, was

14

trained for each NCBI+BacMap phenotypic trait and text corpus. Phenotypic traits with less

than 10 positive and negative labels were deemed as untrainable and removed from the

dataset. The model score was defined as the average AUC score on 5 stratified folds. Random

guessing would have AUC score of 0.5. The regularization parameter 𝐶 ∈ {2−15, 2−14,

… , 24, 25} was optimized using stratified 5-fold cross-validation (on the remaining 4/5

folds of the first split), keeping the value with the best AUC score. Figure 4-1 shows the

AUC scores of the baseline BoW model.

Figure 4-1 AUC scores of the baseline BoW model with marked medians

As it can be seen from Figure 4-1, other, the only dataset comprised of multiple sources, is

significantly less accurate (with 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01 using a paired t-test) than all other dataset

except for PMCArticles.

15

5. Document embedding

Both Word2vec and GloVe are methods for word embeddings, but for the problem of

document classification, a single vector encoding a document is needed. We explored three

methods, two based on aggregating word embeddings and one based on recurrent neural

networks.

5.1. Aggregation of word embeddings

Word embeddings are generated in a way that tries to preserve the word meanings in N-

dimensional space. The simplest way to get a document embedding from word embeddings

is to sum all the word embeddings into a single N-dimensional vector. While this approach

does not take word order into account, it does consider similar words, as they should have

similar embeddings.

5.1.1. Aggregation function

Instead of summing all word vectors, several functions were tested to try to determine a

possibly better function for combining information from multiple word embeddings. This

was done by using Word2vec and GloVe embeddings, trained on the entire PubMed Central

corpus with embedding size 𝑒 = 100, to classify 60 representative phenotype traits. For each

document, a single embedding was calculated from all its word embeddings using one of the

tested functions: .05 percentile, .95 percentile, min, max, sum, as well as min, max and sum

applied to normalized word embeddings and a concatenation of min, max and sum (further

referred as MinMaxSum), both on regular and L2 normalized word embeddings.

16

Figure 5-1 AUC scores while classifying 60 phenotypic traits using different functions with

embeddings trained on the entire PMC corpus

All tested functions had similar scores, but MinMaxSum showed better results than others.

Using normalized vectors with this function improved the AUC score of Word2vec

embeddings in two corpora, PubmedSearch and Wikipedia, but had a negative effect on

GloVe embeddings in the PMCArticles corpus. Despite this, MinMaxSum applied on

normalized vectors was chosen as the aggregating function.

5.1.2. Weighting word embeddings

Frequent words are given vectors with large L2 norms by most embedding methods, which

is a problem while aggregating word embeddings. Frequent words (such as the, and or they)

do not have high information value but have the greatest impact. This is true even while

using normalized embeddings, as they greatly outnumber other words. One way to overcome

this issue was to remove English stop-words, but as the corpora were comprised of scientific

texts, frequent scientific words remained.

17

Word embeddings were weighted using smooth inverse frequency (SIF) [18]:

𝑠𝑖𝑓(𝑤) =
𝑎

𝑎 + 𝑝(𝑤)
(21)

where 𝑎 is a small constant (10−3 was used) and 𝑝(𝑤) is the word frequency estimated from

the corpus. For the sake of comparing corpora specificity, word frequencies were estimated

from the same corpus used to train the word embeddings.

Embedding of document 𝐷 was then calculated as:

𝑑′ =
1

|𝐷|
∑ 𝑠𝑖𝑓(𝑤) 𝑒𝑚𝑏(𝑤)

𝑤∈𝐷

(22)

Following [18], the projection of the document embeddings on their first principal

component 𝑢 was removed:

𝑑 = 𝑑′ − 𝑢 𝑢𝑇 𝑑′ (23)

The reasoning behind removing the projection on the first principal component was that

vectors have huge components along semantically meaningless directions as a by-product of

embedding training.

5.2. Document embedding using LSTM

The memory block in LSTM can be used to store information passed from the previous word.

The hidden state of an LSTM, after passing all the words from the document, was considered

as the documents embedding and used to classify microbial phenotypic traits. In this way,

not only were dense word embeddings used, but also the order of words in the document was

considered.

5.2.1. Architecture

The model consisted of an input layer, one LSTM hidden layer, and output layer. The

network was trained on the binary classification task differentiating documents describing

species according to phenotype trait presence or absence. A different model was trained for

each phenotypic trait.

18

All word embeddings connected to one document were considered a single input and

sequentially fed to the network. The final hidden state (document embedding 𝑑) was then

passed to the output layer with softmax activation, as shown on Figure 5-2.

Figure 5-2 Architecture used to predict phenotypic traits using word embeddings

Dropout was only applied on non-recursive connections [19]. Training was done using

RMSprop [20], a gradient descent optimizer that utilizes the moving average of squared

gradients 𝑔 for each weight

𝑟𝑡 = 𝜌𝑟𝑡−1 + (1 − 𝜌)𝑔 ∗ 𝑔 (24)

The moving average 𝑟 and gradient 𝑔 are then used to update parameters 𝜃

𝜃𝑡 = 𝜃𝑡−1 −
𝜀

√𝛿 + 𝑟
∗ 𝑔 (25)

where 𝜀 is the learning rate and 𝛿 the decay rate. As the task was binary classification,

binary cross entropy was used as the loss function 𝐿:

𝐿(𝒐, 𝒚) = −
1

𝑁
∑(𝑦𝑖 ∗ log 𝑜𝑖 + (1 − 𝑦𝑖) ∗ log(1 − 𝑜𝑖))

𝑁

𝑖=1

(26)

The number of epochs was set to 100, with early stopping if the loss function, applied to the

validation set, showed no improvement in 6 epochs.

19

5.2.2. Hyperparameters

As grid-searching LSTMs is time-consuming, only a few hyperparameters were tested.

While experimenting on the phenotypic trait “TemperatureRange=thermophilic”,

parameters: dropout ∈ {0.5, 0.7}, LSTM hidden layer size 𝐻 ∈ {100, 300} and learning rate

𝜀 ∈ {0.00075, 0.001, 0.0025} have shown good results. The best parameters for a given

embedding and corpus specificity were determined by the best average AUC test score on

stratified 5-fold split using three phenotypic traits that were chosen based on different ratio

of positive examples, as well as different quality results using the baseline model:

• TemperatureRange=thermophilic

o 16.87% positive examples and baseline AUC score of 0.97

• shape=bacilli

o 71.07% positive examples and baseline AUC score of 0.85

• metabolism=cellulosedegrader

o 9.49% positive examples and baseline AUC score of 0.99

All models were defined using the Keras [21] framework with Tensorflow [22] backend.

Because of the way CUDA GPU parallelization works, lists of word embeddings had to be

zero-padded to the length of the largest document, which did not affect the result but meant

that having one large text in the batch increased the memory requirements drastically.

Using a Nvidia GTX 1060, it took approximately 3 days to find the best hyperparameters for

a given embedding and dataset. This was much faster when the model had poor predictive

performance, because of early stopping after 6 epochs without improvement of the loss

function applied on the validation set.

Best results in hyperparameter optimization for hamap, MicrobeWiki, and PMCArticles

datasets are shown in Table 1, where 𝑃1 = TemperatureRange=thermophilic, 𝑃2 =

shape=bacilli and 𝑃3 = metabolism=cellulosedegrader.

20

Table 1 AUC scores for three phenotypic traits using the best hyperparameters obtained for each

embedding separately

 Train Test

embedding dataset 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟏 𝑷𝟐 𝑷𝟑
𝟏

𝟑
∑ 𝑷𝒊,𝒕𝒆𝒔𝒕

𝟑

𝒊=𝟏

Word2vec

entire PMC
hamap 0.99 0.91 0.99 0.95 0.59 0.91 0.82

Word2vec

Middle
hamap 0.99 0.82 0.99 0.95 0.54 0.94 0.81

Word2vec

Specific
hamap 0.99 0.90 0.99 0.95 0.61 0.92 0.83

GloVe

entire PMC
hamap 0.90 0.79 0.91 0.80 0.62 0.76 0.73

GloVe

Middle
hamap 0.86 0.74 0.88 0.73 0.60 0.74 0.69

Glove

Specific
hamap 0.87 0.74 0.84 0.76 0.62 0.66 0.68

Word2vec

entire PMC
MicrobeWiki 0.99 0.98 1 0.84 0.48 0.32 0.54

Word2vec

Middle
MicrobeWiki 0.99 0.98 1 0.87 0.48 0.35 0.57

Word2vec

Specific
MicrobeWiki 0.99 0.99 1 0.77 0.54 0.53 0.61

Word2vec

entire PMC
PMCArticles 0.98 0.91 0.97 0.76 0.58 0.53 0.62

Word2vec

Middle
PMCArticles 0.96 0.87 0.97 0.77 0.58 0.55 0.63

Word2vec

Specific
PMCArticles 0.96 0.86 0.97 0.75 0.57 0.58 0.63

21

6. Performance and comparison with baseline

As the NCBI+BacMap phenotypic traits had the largest number of labeled documents, they

were used to compare different capabilities and characteristics of our three models.

Phenotypic traits with less than 10 positive and negative labels have been deemed as

untrainable and were not considered further.

The baseline BoW + SVM model described in 4.1 was compared to two aggregation methods

(MinMaxSum of norms and Weighted embedding approach) with RF on all phenotype

document datasets using embedding size 𝑒 ∈ {100, 300}. The LSTM model was compared

to the baseline only using the hamap dataset, because of very high computational costs, as

well as poor results on the three phenotypic traits used for finding optimal hyperparameters

when using other datasets (Table 1).

6.1. Aggregation methods

Since the approach using aggregation functions generated a document embedding, and not

the final prediction, both a support vector machine (SVM) and Random Forest (RF) [23]

were trained to predict phenotypic traits from that embedding.

It was shown that RF with 500 decision trees behaved very similar to a SVM model

(considering the best model among a linear SVM with 𝐶 ∈ {2−5, 2−4, … , 214, 215} and a

Radial Basis Function (RBF) SVM with regularization parameter 𝐶 ∈ {2−5, 2−4, … , 214,

215} and 𝛾 ∈ {2−15, 2−14, … , 24, 25}). All parameters were optimized using stratified 5-

fold cross-validation, keeping the value with the best AUC score. To minimize

computational time, RF was used in all classification tasks.

22

6.1.1. MinMaxSum of norms

14 out of 18 comparisons (in both Word2vec and GloVe) showed significantly (𝑝𝑣𝑎𝑙𝑢𝑒 <

0.01 using a paired t-test) higher predictive accuracy while using embedding size of 300

over 100, as can be seen in Figure 6-1 and Figure 6-2. The baseline BoW model was

significantly (𝑝𝑣𝑎𝑙𝑢𝑒 < 10−4 using a paired t-test) better than any model based on the

aggregation function MinMaxSum of norms, regardless of the embedding.

Figure 6-1 AUC scores for MinMaxSum of norms using Word2vec embedding and RF classifier, p-

value (using a paired t-test) when comparing models with different embedding sizes is next to the

paired boxplot, the baseline p-value (topmost one) is the maximal p-value (using a paired t-test)

when comparing the baseline Bow model with all other models

Figure 6-2 AUC scores for MinMaxSum of norms using GloVe embedding and RF classifier, in the

same format as Figure 6-1

23

6.1.2. Weighted embeddings

Using embedding size 100 or 300 mostly did not exhibit a significant difference (4 of 18

comparisons) with Word2vec (Figure 6-3). On the other hand, GloVe embedding with size

300 was significantly (𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01 using a paired t-test) better then with size 100 in 15

of 18 comparisons (Figure 6-4). The baseline model was significantly (𝑝𝑣𝑎𝑙𝑢𝑒 < 10−11

using a paired t-test) better than any model based on the proposed weighted aggregation

approach.

Figure 6-3 AUC scores for the weighted aggregation using Word2vec embedding and RF classifier,

in the same format as Figure 6-1

Figure 6-4 AUC scores for the weighted aggregation using GloVe embedding and RF classifier, in

the same format as Figure 6-1

24

6.2. LSTM method

LSTM model had a classifier built into the architecture, so there was no need to use RF or

SVM. As a separate model needed to be trained for each phenotypic trait, the training process

was time-consuming. Using a Nvidia GTX 1060, it took approximately 7 days to get AUC

scores for NCBI+BacMap phenotypic traits.

Figure 6-5 AUC scores for LSTM on the hamap dataset

Although this model takes both similar words and word order into account, it performed

worse than all other models. GloVe embeddings showed consistently lower accuracy than

Word2vec (average AUC=0.63 and 0.69 for Glove and W2V, respectively).

Whether it was because the documents were too long, or the training set too small (around

1000 documents per phenotypic trait), the LSTM model tended to overfit.

25

7. Influence of the specificity of corpora

Is it better to use a larger, more general corpus, or a smaller, but more specific corpus for

learning word embeddings? Although the proposed models were not better than the BoW

baseline, the influence of the size and specificity of the embedding corpora could still be

analyzed.

To check if the AUC scores showed a significant trend with using different specificity

corpora (entire PMC, Middle, Specific) to train the embeddings, permTREND function from

the R [24] package perm [25] was used. In short, this method encoded the embedding

corpora: Specific corpus became 1, Middle corpus 2, and the entire PMC corpus 3. Pearson

correlation between corpora index and AUC scores was calculated. From this, the p-value

was found empirically, through the randomization of corpora indexes. Indexes were

permuted multiple times, and the new correlation coefficient was calculated; the p-value

would be low if the initial correlation coefficient was unlikely to be observed in randomized

data.

7.1. Corpus specificity test on NCBI+BacMap phenotypic

traits

The same phenotypic traits used to compare the proposed models with the baseline in the

previous chapter were used to test if there is a correlation between embedding corpus size

and model quality.

7.1.1. MinMaxSum of norms

The observed trend using MinMaxSum of norms was not significant using Word2vec (Figure

7-1) or GloVe (Figure 7-2) on any dataset. It is important to note that even though the Specific

corpus consists of 4.9% of the entire PMC articles, it had very similar (or even slightly better)

results.

26

Figure 7-1 AUC scores for MinMaxSum of norms using Word2vec embedding with size 300 and

RF classifier; p-values are from the permTREND function

Figure 7-2 AUC scores for MinMaxSum of norms using GloVe embedding with size 300 and RF

classifier; p-values are from the permTREND function

7.1.2. Weighted embeddings

Weighting word embeddings while using Word2vec embedding showed a visible (not

significant) trend in favor of smaller, specific datasets, as shown in Figure 7-3. One might

argue that this was because word probabilities were also estimated from the same corpus the

embeddings were trained on, but using GloVe embeddings did not reveal the same trend

(Figure 7-4).

When comparing Word2vec trained on the entire PMC corpus and on the Specific corpus, 4

of 6 datasets showed significantly (𝑝𝑣𝑎𝑙𝑢𝑒 < 10−3 using a paired t-test) better predictive

accuracy with the Specific corpus.

27

Figure 7-3 AUC scores for the weighted aggregation using Word2vec embedding with size 300 and

RF classifier; p-values are from the permTREND function

Figure 7-4 AUC scores for the weighted aggregation using GloVe embedding with size 300 and RF

classifier; p-values are from the permTREND function

7.1.3. Simulation experiments to determine the influence of corpus

size and specificity on predictive accuracy

While the trend was not significant, the fact that Specific embeddings showed mostly same

(or even better) results than the entire PMC corpus invited further testing. We investigated

the predictive power of the word embeddings if they had all been generated from corpora of

the same size, but different subject specificity. To test this, the entire corpus (1.5M) and its

Middle subset (374K) were randomly sampled to the size of the Specific subset (76K).

28

The same trend shown while using weighted Word2vec embeddings (Figure 7-3) was even

more pronounced (Figure 7-7) with some datasets now showing a significant (𝑝𝑣𝑎𝑙𝑢𝑒 <

0.05) trend. The same trend could now also be seen while using MinMaxSum of norms

(Figure 7-5). GloVe embeddings showed no visible trend related to corpora specificity when

using MinMaxSum of norms (Figure 7-6).

With all corpora the same size, using weighted embeddings showed a trend towards higher

predictive accuracy both Word2vec (Figure 7-7) and GloVe (Figure 7-8). This was most

likely because the Specific corpora had a better approximation of word probability than other,

subsampled, corpora.

Figure 7-5 AUC scores for MinMaxSum of norms using Word2vec embedding with size 300

trained on the same sized corpora; p-values are from the permTREND function

Figure 7-6 AUC scores for MinMaxSum of norms using GloVe embedding with size 300 trained on

the same sized corpora; p-values are from the permTREND function

29

Figure 7-7 AUC scores for the weighted aggregation using Word2vec embedding with size 300

trained on the same sized corpora; p-values are from the permTREND function

Figure 7-8 AUC scores for the weighted aggregation using GloVe embedding with size 300 trained

the same sized corpora; p-values are from the permTREND function

30

7.2. Corpus specificity test on highly specific phenotypic

traits

In addition to corpora related to scientific fields of biology and microbiology, four corpora

related to highly specific phenotypes (further referred as “Very Specific [A, B, C, D]

corpus”) were selected using the following MeSH terms:

a. Sporulation (9.4K documents)

• Spores [B05.775], [A11.870]

• Endospore-Forming Bacteria [B03.300]

b. Pathogenic in mammals (33.3K documents)

• Host-Pathogen Interactions [G06.590.470]

• Bacterial Infections [C01.252]

• Blood-Borne Pathogens [B03.165]

c. Nitrogen fixation (2.3K documents)

• Symbiosis [G06.590.580.800], [G16.100.900]

• Endophytes [B05.237]

• Rhizosphere [G16.500.275.157.625], [G16.500.853], [N06.230.124.437]

• Nitrogen Fixation [G06.590.620], [G06.590.110.610], [G06.099.112.610]

• Nitrogen Cycle [G16.500.240.465]

d. Cell Respiration (744 documents)

• Bacteria, Aerobic [B03.120]

• Cell Respiration [G04.299.305]

• Anaerobiosis [G03.495.146]

• Aerobiosis [G03.495.112]

These corpora consisted of few documents and targeted a specific set of phenotypic traits.

Very Specific A was targeted at a single phenotypic trait (sporulation), Very Specific B, the

largest very specific corpus, was targeted at 9 phenotype traits, Very Specific C was targeted

at 5 and Very Specific D at 2 phenotypic traits.

We wanted to see if embeddings trained on very specific corpora would perform better on

the 17 very specific phenotypic traits than the three larger corpora and if the trend favoring

specific corpora, visible while using the weighted aggregation approach, would persist.

31

7.2.1. Results

Since the weighted aggregation approach with Word2vec embedding showed a trend

favoring specific corpora with NCBI+BacMap phenotype traits, we further tested this

approach with very specific phenotypic traits.

Very Specific models were less accurate than Specific, meaning that the minimum corpus

size needed to incorporate semantics into embeddings, and to approximate word frequencies,

might have been reached. The specificity trend was quite visible on the MicrobeWiki dataset

while using Word2vec (Figure 7-9).

Figure 7-9 AUC scores for the weighted aggregation using Word2vec embedding with size 300, the

appropriate Very Specific model was used for each label

Figure 7-10 AUC scores for the weighted aggregation using GloVe embedding with size 300, the

appropriate Very Specific model was used for each label

32

8. Model complementarity

Even if a model was generally less accurate, it could still be confident in some predictions

where the more accurate model was not. Given that different methods were used to get the

final document representation, it was possible that models work better on different

documents.

To measure which documents the model was certain about, its confidence level (output) was

converted to a precision score by thresholding the precision-recall curves obtained via cross-

validation. Simply put, each confidence score given by the model was used as a threshold

(instead of the typical 0.5 threshold), from which the precision was calculated as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(27)

This was done for the minority class, most often being ‘+‘ (presence of a phenotypic trait).

Predictions with 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≥ 0.8 were considered as confident predictions.

Figure 8-1 Example of distribution of confident predictions while using two models

The percentage the predictions improved when using a model alongside the baseline was

calculated as
𝑎𝑑𝑑𝑒𝑑

𝑏𝑒𝑓𝑜𝑟𝑒
 , following the notation from Figure 8-2.

Figure 8-2 Improvement for classifying documents when using a model alongside the baseline

33

8.1. MinMaxSum of norms

No conclusion could be made whether it is better to use a subject-specific corpus alongside

the baseline model; both Word2vec (Figure 8-3) and GloVe (Figure 8-4) showed varying

results depending on the dataset. Approximately 42% of phenotype traits showed an

improvement, which averaged around 10%.

Figure 8-3 Percentage of improvement for MinMaxSum of norms using Word2vec embedding with

size 300 and RF classifier; extreme values (0 and >1) are counted on each side

Figure 8-4 Percentage of improvement for MinMaxSum of norms using GloVe embedding with size

300 and RF classifier; extreme values (0 and >1) are counted on each side

34

8.2. Weighted embeddings

Word2vec embedding had same or higher percentage improvement of high-confidence

annotations while using alongside the baseline model than Glove. Using a more subject

specific corpus showed better results with Word2vec (Figure 8-5), but not with GloVe

(Figure 8-6). Using weighted embeddings approach alongside the baseline model showing

better results than using MinMaxSum of norms.

Figure 8-5 Percentage of improvement for weighted aggregation using Word2vec embedding with

size 300 and RF classifier; extreme values (0 and >1) are counted on each side

Figure 8-6 Percentage of improvement for weighted aggregation using GloVe embedding with size

300 and RF classifier; extreme values (0 and >1) are counted on each side

35

9. Conclusion

Using a simple bag-of-words with tf-idf weighting outperformed all proposed models based

on word embeddings, even though the initial idea was that using embeddings should result

in overall more accurate models.

The GloVe embedding did not show a substantial net difference between using the entire

corpus of 1.5M documents and its subject specific subset making up only 5% of the

documents. Word2vec embedding had shown slightly better results while using a subject-

specific corpus, which could be attributed to the fact that the global word co-occurrence was

not available during training, as opposed to GloVe. This was consistent throughout all our

tests and especially expressed when using the weighted embedding approach (even

significant in some datasets when the corpora were reduced to the same size). Using highly

subject-specific corpora showed a deterioration in performance, which could be caused by

small corpora size.

Even though the weighted embedding approach had an overall worse performance than

MinMaxSum of norms, using it alongside the baseline model showed a greater increase in

the correct classification of the minority class. This means that it could correctly classify

documents that the baseline BoW model was not confident about, and that it could be used

alongside the existing model to increase performance.

The approach using LSTMs hidden layer to represent document embeddings was prone to

overfitting. Long-term connections could be a problem when having a small dataset, as the

model could learn a combination of word embeddings that appear only in the training set.

Using word embeddings in classifying documents is a promising approach, but the

challenges ahead include how to choose a corpus to train the embedding and how to represent

documents. Further improvements could possibly be made in the training of word

embeddings, as both Word2vec and GloVe were trained using default parameters, such as

context size or number or epochs. These parameters were chosen by their respective authors

because they showed good results, but given the specificity of biomedical corpora, such

parameters may not be optimal.

36

Bibliography

[1] Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey;, "Efficient Estimation of

Word Representations in Vector Space," arXiv preprint arXiv:1301.3781v3, 2013.

[2] J. Pennington, R. Socher and C. D. Manning, "GloVe: Global Vectors for Word

Representation," Empirical Methods in Natural Language Processing (EMNLP), pp.

1532-1543, 2014.

[3] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, "Distributed

Representations of Words and Phrases and their Compositionality," Advances in neural

information processing systems, pp. 3111-3119, 2013.

[4] Y. Goldberg and O. Levy, "word2vec Explained: Deriving Mikolov et al.’s Negative-

Sampling Word-Embedding Method," arXiv preprint arXiv:1402.3722v1, 2014.

[5] S. Hochreiter and J. Schmidhuber, "Long Short-term Memory," Neural Computation,

pp. 1735-1780, 1997.

[6] C. Olah, "colah's blog, Understanding LSTM Networks," 27 August 2015. [Online].

Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs. [Accessed 5

May 2017].

[7] "PubMed Central," [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/.

[Accessed 3 March 2017].

[8] "PubMed Central FTP site," [Online]. Available: ftp://ftp.ncbi.nlm.nih.gov/pub/pmc.

[Accessed 3 March 2017].

[9] Python Core Team, "Python: A dynamic, open source programming," Python Software

Foundation, 2017. [Online]. Available: https://www.python.org/.

[10] R. Řehůřek and P. Sojka, "Software Framework for Topic Modelling with Large

Corpora," in Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, Valletta, Malta, ELRA, 2010, pp. 45-50.

37

[11] maciejkula, "GloVe Python," GitHub repository, 2017. [Online]. Available:

https://github.com/maciejkula/glove-python.

[12] S. Bird, E. Klein and E. Loper, Natural language processing with Python: analysing

text with the natural language toolkit, O’Reilly Media, Inc., 2009.

[13] F. M. Porter, "An algorithm for suffix stripping," Program 14.3, pp. 130-137, 1980.

[14] "MeSH (Medical Subject Headings)," National Center for Biotechnology Information,

[Online]. Available: https://www.ncbi.nlm.nih.gov/mesh.

[15] P. J. A. Cock , T. Antao , J. T. Chang , B. A. Chapman , C. J. Cox , A. Dalke , I.

Friedberg , T. Hamelryck , F. Kauff , B. Wilczynski and M. J. L. de Hoon, "Biopython:

freely available Python tools for computational molecular biology and bioinformatics,"

2009. [Online]. Available: https://doi.org/10.1093/bioinformatics/btp163.

[16] M. Brbić, M. Piškorec, V. Vidulin, A. Kriško, T. Šmuc and F. Supek, "The landscape

of microbial phenotypic traits and associated genes," Nucleic Acids Research 44.21,

pp. 10074-10090, 2016.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot and É. Duchesnay, "Scikit-learn: Machine

Learning in Python," Journal of Machine Learning Research vol. 12, p. 2825−2830,

2011.

[18] S. Arora, Y. Liang and T. Ma, "A Simple but Tough-to-Beat Baseline for Sentence

Embeddings," ICLR 2017 conference submission, 2016.

[19] W. Zaremba, I. Sutskever and O. Vinyals, "Recurrent Neural Network Regularization,"

arXiv:1409.2329, 2015.

[20] G. Hinton, N. Srivastava and K. Swersky, "rmsprop: Divide the gradient by a running

average," Neural Networks for Machine Learning, p. slide 26.

[21] F. Chollet and others, "Keras," GitHub repository, 2015. [Online]. Available:

https://github.com/fchollet/keras.

38

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.

Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,

R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, M. Schuster, R.

Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.

Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow: Large-scale machine

learning on heterogeneous systems, Software available from tensorflow.org, 2015.

[23] L. Breiman, "Random Forests," Machine Learning , vol. 45, no. 1, pp. 5-32, 2001.

[24] R. C. Team, "R: A Language and Environment for Statistical Computing," R

Foundation for Statistical Computing, Vienna, 2015.

[25] M. P. Fay and A. P. Shaw, "Exact and Asymptotic Weighted Logrank Tests for Interval

Censored Data: The R Package," Journal of Statistical Software, vol. 36, no. 2, pp. 1-

34, 2010.

39

Klasifikacija bioloških anotacija na velikoj skali koristeći reprezentacije riječi

izvedene iz dokumenata biomedicinske znanstvene literature

Sažetak

Naučeni su vlastiti Word2vec i GloVe modeli prikaza riječi za znanstvenu literaturu u

području biomedicine, kao i tri klasifikacijske metode za diskriminaciju fenotipova, dvije

temeljene na agregaciji vektorskog prikaza riječi, i jedna na rekurentnim neuronskim

mrežama. Prikazi riječi su trenirani na velikom korpusu znanstvenih članaka i njegovim

tematski specifičnim podskupovima. Rezultati klasifikacije su testirani na 6 izvora

dokumenata. Pokazano je da Word2vec postiže bolje rezultate kada je treniran na tematski

specifičnom podskupu koji je sačinjen od 4.9% od ukupnih članaka nego kada je treniran na

cijelom korpusu. Korištenje rekurentnih neuronskih mreža imalo je problema s

prenaučenosti, moguće zbog predugačkih dokumenata ili premalog skupa za učenje. Iako

predloženi modeli nisu bili bolji od stroja potpornih vektora koristeći prikaz vreće riječi,

pokazano je da korištenje agregacijskih metoda uz bazni model povećava količinu ispravne

klasifikacije manjinske klase kod nekih fenotipova za oko 10%.

Ključne riječi: vektorski prikaz riječi, Word2vec, GloVe, RNN, LSTM, klasifikacija

fenotipova, specifičnost korpusa

40

Classification of Large-Scale Biological Annotations Using Word
Embeddings Derived from Corpora of Biomedical Research Literature

Abstract

Custom Word2vec and GloVe embeddings for scientific literature in the biomedical domain

were trained, as well as three classification methods for discriminating phenotype traits, two

of which were based on aggregating word embeddings and one on recurrent neural networks.

Word embeddings were trained on a large corpus of scientific articles and its more subject-

specific subsets. Classification performance was tested on 6 document sources. It was shown

that Word2vec achieves better performance when trained on a subject-specific subset corpus

comprised of 4.9% articles, than when trained on the entire corpus. Using recurrent neural

networks had an overfitting problem, possibly because the documents were too long or the

training set too small. Although the proposed models did not outperform support vector

machine using bag-of-words, it was shown that using the aggregation methods alongside the

baseline model increases the amount of correctly classified minority class in some phenotype

traits by around 10%.

Keywords: word embedding, Word2vec, GloVe, RNN, LSTM, phenotype classification,

corpus specificity

