
SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Master’s thesis no. 1182

De novo assembly using long
error-prone reads

Mario Kostelac

Zagreb, February 2016.

iii

CONTENTS

1. Introduction 1

2. Preliminaries 3
2.1. Oxford Nanopore . 3

2.1.1. Technology . 3

2.1.2. Disruptiveness . 4

2.2. Assembly . 5

2.3. Overlap-layout-consensus assembly 5

2.4. Overlapper goal . 6

2.5. Overlap types . 6

3. Layout methods 9
3.1. Converting overlaps to dovetail overlaps 9

3.1.1. Input . 10

3.1.2. Output . 10

3.1.3. Algorithm . 10

3.1.4. Analysis . 10

3.2. Filtering contained reads . 11

3.2.1. Input . 11

3.2.2. Output . 11

3.2.3. Algorithm . 12

3.2.4. Analysis . 12

3.3. Tuning dovetail overlaps . 13

3.3.1. Input . 14

3.3.2. Output . 14

3.3.3. Algorithm . 14

3.3.4. Analysis . 17

3.4. Filtering transitive overlaps . 17

iv

3.4.1. Input . 18

3.4.2. Output . 18

3.4.3. Analysis . 18

3.5. Filtering short overlaps . 18

3.6. Filtering erroneous overlaps . 19

3.6.1. Input . 19

3.6.2. Output . 19

3.6.3. Algorithm . 19

3.6.4. Analysis . 20

3.7. Graph creation . 20

3.7.1. Input . 21

3.7.2. Output . 21

3.7.3. Algorithm . 21

3.7.4. Analysis . 22

3.8. Graph simplification . 22

3.9. Trimming (tips) . 22

3.9.1. Input . 23

3.9.2. Output . 23

3.10. Bubble popping . 23

3.10.1. Input . 23

3.10.2. Output . 24

3.10.3. Algorithm . 24

3.10.4. Analysis . 29

3.11. Extracting unitigs . 29

3.11.1. Input . 30

3.11.2. Output . 30

3.11.3. Algorithm . 30

3.11.4. Analysis . 30

3.12. Extracting contigs . 32

3.12.1. Input . 32

3.12.2. Output . 32

3.12.3. Algorithm . 32

3.12.4. Analysis . 33

3.13. General layout algorithm . 33

v

4. Implementation 34
4.1. Project history . 34

4.2. Used technologies . 34

4.3. Supported input and output formats 35

4.4. Modules . 35

4.5. Stats . 36

4.6. Installation and running . 36

5. Testing and results 38
5.1. Hardware and software . 38

5.2. Datasets . 38

5.3. Dot plot as a verification method . 39

5.4. MinION E. coli dataset - default parameters 41

5.5. Pacbio E. coli dataset - default parameters 43

5.6. Pacbio E. coli dataset - modified quality_threshold parameter 44

5.7. Comparison with minasm . 45

6. Conclusion 48

Bibliography 49

vi

1. Introduction

Understanding nature has always been a big desire of the human race. Observing, craft-

ing theses, writing notes, observing again and again until the hypotheses are proven to

be correct. That is just how it started. The whole story with observing the DNA

started back in the 1866, when Gregor Mendel has written his Law of Heredity (Cas-

tle, 1903), observation on transferring different properties of plants across generations.

As a matter of fact, at that point we did not know that the same mechanism of nature

is accountable for transferring single’s properties on their children; and that no living

being can run away from Deoxyribonucleic acid (DNA).

Having an “image” of someone’s DNA brings many benefits such as observation

of mutations and detection of genes that could cause some diseases and illnesses. Fast

forward to 2015; we know how that mechanism works and we know how to read the

source of it - DNA (the process of “reading” the DNA is called sequencing), but the

length of every fragment we get as output from the sequencing process (called read)

is much shorter than the original DNA. We get it cut, in fragments, without any order

or position in the original DNA. As years passed by, new sequencing techniques were

developed so length and quality of reads depend on the platform used (Vaser, 2015).

One of the hottest and most disruptive sequencing technologies in bioinformatics these

days is MinION reader, produced in labs of Oxford Nanopore technologies. It produces

very long reads (2 or 3 orders of magnitude longer than the previous generation), with

a higher error rate as a tradeoff. Longer reads enable us to resolve short repeats in the

DNA, but the higher noise in data introduces new problems which include the need for

novel overlapping techniques.

The goal of this thesis is to present a modified assembly technique for such longer,

erroneous reads, developed on the Faculty of Electrical Engineering and Computing in

Zagreb, under the leadership of assoc. prof. Mile Šikić. Software presenting devel-

oped technique is called ra-integrate. It can be classified as a standard OLC de novo

assembler without a consensus phase.

Chapter 2 (Preliminaries) will describe the sequencing technology used, basic con-

1

cepts of assembling, different ways of doing it and different overlap types.

Chapter 3 (Methods) will try to describe the key methods used for building layout

phase of our assembler.

In Chapter 4 (Implementation) we dissect the current state of the assembler imple-

mentation and specify the reasons for such architecture.

Chapter 5 (Results) shows results on two different datasets.

Chapter 6 brings the conclusion.

2

2. Preliminaries

This chapter will try to cover required knowledge to understand the rest of the thesis. It

will start with describing current state of sequencing technology developed by Oxford

Nanopore technologies (ONT). Afterwards, it will describe assembly process, general

terms and types of assemblers and overlaps. Vast majority of important terms will be

introduced in this chapter.

2.1. Oxford Nanopore

2.1.1. Technology

Oxford Nanopore is a sequencing technology developed by Oxford Nanopore Tech-

nologies. As its name says, it uses nano-scale pores (nanopores) as tunnels to drive

DNA strands through (oxs). During the time DNA strands are passing through nanopores

(as visible on Fig. 2.1), the device is passing ionic current through these nanopores and

it is reading changes in current as a reaction to biological molecules passing through

or nearby. These changes in current can be used to identify single molecules - single-

molecule technology.

Figure 2.1: DNA strain being pulled through a nanopore (http://bit.ly/1X7FvxH)

3

Nanopores are protein-based (in the future they are going to be replaced by syn-

thetic, solid-state nanopores, (sol)) and they are set in electrically resistant polymer

membrane. As described, changes in current going through that membrane can be

used to identify different molecules, they can be also used to identify different DNA

bases - adenine, guanine, cytosine and thymine (visible on Figure 2.2).

Figure 2.2: Different molecules are causing different current changes (http://bit.ly/1PWDhLD)

2.1.2. Disruptiveness

The value of described technology lies in three different properties - price, sequences

length and portability. At the time of writing this thesis, listed price for the MKI set

(sequencing machine + flow-cell) is ~1000$. Previous generation technologies cost at

least one order of magnitude more.

MinION produces DNA sequences (produces as “streams to computer”) of variable

lengths, usually longer than 1000b. Longest produced sequence is longer than 200,000

bases. Having an input set made of such a long DNA sequences solves a problem

of short repeats (T. J. Treangen, 2011) and lowers the computational complexity of

assembly.

MinION (device using Oxford Nanopore technology) set is very portable (smaller

mobile phone sized) and connects through standard USB port, which puts that device

almost on consumer market.

Huge drawback of this technology is the error rate higher than all other technolo-

gies. It can be even 40%, but range of error rate for 2d reads is usually 20-30% (Madoui

et al., 2015).

PacBio technologies developed competitive single-molecule real-time technology,

producing long-reads (not as long as Oxford Nanopore), with lower error-rate than

Oxford Nanopore. Developed assembler should work equally good both with PacBio

and MinION datasets.

4

2.2. Assembly

Once we connect MinION to our computer and it starts pulling DNA molecules through

nanopores, streams of data are coming to a connected computer. The streamed data is

actually current level over time which is being converted to strings made of C, G, A

and T by software provided by ONT. That is how we get reads (from now on, reads are

just strings of these four letters, sometimes with some associated attributes like quality

or coverage) and point where computer science takes place. Genome assembly (refer-

enced as assembly in latter parts of the thesis) is the process of reconstructing original

genome from reads. Since reading technologies are imperfect and reads represent DNA

in fragments, often wrong because of error rate, cut and without any meaningful order,

a DNA strand has to be read multiple times in order to get more information and fill

the gaps. That information overhead is usually called coverage - average number of

reads per single DNA base.

Over years, two main assembling approaches have been developed: de novo and

mapping (there are some hybrid techniques that have properties both of de novo and

mapping assembling techniques).

De novo assembling tries to reproduce (assemble) genomes purely from reads (and

associated metadata like quality), without the access to DNA reference - string of C, T,

A and Gs that is believed to be correct representation of a DNA strand of a single of

particular specie.

Mapping assembling has the access to DNA reference of the same specie.

Fact that singles of same specie share large amount of genome material (by (hgp),

every two human beings share 99% of genome material) allows us to compare differ-

ence between DNA reference of the specie (if it exists) and output of assembly as a

success measure.

Assembler explained in this document is pure de novo assembler.

2.3. Overlap-layout-consensus assembly

The Overlap-layout-consensus assembly (shorter OLC) method was developed for the

first generation of longer-read (∼ 400− 800bp) sequencing technologies (Miller et al.,

2010). It is based on mathematical concept of graph in order to use existing graph

algorithms and simplify assembly process. Assembly process usually consists of three

main phases:

Overlap - finding overlaps between reads

5

Layout - simplifying graph built from overlaps and linearizing graph as much as pos-

sible

Consensus - resolving ambiguities from layout phase and finishing the assembly.

Phases definitions are not very clear and assemblers usually have some phases in-

between. PBcR pipeline (run), for example, runs meryl module that calculates k-mers

(sequences of k consecutive bases) frequencies and decides which k-mers are bringing

new information into dataset, and which of them are information overhead.

Nature of OLC definition allows very granular phase decoupling in such way that

assembler (and each phase) is built of several modules. Having that, people also devel-

oped hybrid OLC assemblers (hyb) built of these modules, using different sequencing

technologies in the same assembly process.

Chapter 3 describes methods used for implementing layout phase of ra-integrate

assembler, assembler developed as part of this thesis.

2.4. Overlapper goal

Since we are not covering overlapper implementation in this thesis, we will just bring

main overlapper goal in short. Overlapper is an algorithm (or program) that finds

overlaps between given reads. It should report overlaps between reads that are adjacent

in real genome (true positive) and it should not report overlaps if they are not adjacent

(false positives). As described, de novo process does not have reference to the original

genome (if it did, we would not need assembler at all) and there is no way to be sure

whether some reads are really adjacent or not. It shifts the detection process from

checking adjacency to similarity comparison and adjacency prediction. Over time,

several techniques have been developed, but some of them are very ineffective when

tackling high error-rate data like ONT (or PacBio) sequences. As part of this thesis

we use owler module of GraphMap, overlapper leveraging modified seed technique,

allowing errors on some positions (owl).

2.5. Overlap types

Like any other information, overlaps have to be modeled (described) somehow. We

use different models in different stages of OLC pipeline. At the start of processing

(right after owler) we use MHAP format (mha), which describes overlapper in a very

simple and concise way. One overlap records looks like

6

[A ID] [B ID] [J a c c a r d s c o r e] [# s h a r e d min−mers]

[0=A fwd , 1=A r c] [A s t a r t] [A end] [A l e n g t h]

[0=B fwd , 1=B r c] [B s t a r t] [B end] [B l e n g t h]

Described in short, it brings IDs of reads, some scores that should tell us how good

reads are overlapping and for each read:

– overlap start position (on read)

– overlap end position (on read)

– read length (redundant information if having set of reads)

– whether original read or its reverse complement is part of overlap.

Having overlaps defined in this form brings simplicity into handling input and out-

put, but is a bad fit for string graph algorithms (Myers, 2005), or any graph represen-

tation derived from string graph. Because of that, we have developed a technique for

transforming these overlaps into dovetail overlaps, described in Chapter 3.

"A ’dovetail overlap’ is one where each fragment has exactly one of its ends in the

alignment, and the alignment begins at one fragment end and continues until the other

fragment end." (ove). In our case, fragment is just a read.

All dovetail overlaps are one of next four types:

1. suffix-suffix (ahang positive, bhang positive)

Figure 2.3: Suffix-suffix dovetail overlap.

2. prefix-prefix (ahang negative, bhang negative)

Figure 2.4: Prefix-prefix dovetail overlap.

3. suffix-prefix (ahang positive, bhang positive)

7

Figure 2.5: Suffix-prefix dovetail overlap.

4. prefix-suffix (ahang negative, bhang negative)

Figure 2.6: Prefix-suffix dovetail overlap.

Orientation left to right means that overlap is using read in the original form, while

right to left means read is used as a reversed complement. ahang is number of bases in

overlap after read a, while bhang is number of bases in overlap before read b.

All other overlaps can be transformed to one of presented types without any infor-

mation loss.

Innie overlap is dovetail overlap which uses second read in form of a reversed comple-

ment (SS and PP).

8

3. Layout methods

This chapter covers most important methods used for implementing layout phase of ra-

integrate. Methods are presented in the order of execution, from first filters to finding

unitigs and contigs, giving a way for implementing very similar layout phase in any

modern programming language.

General idea of all presented methods is to remove information overhead so resulting

string graph is as simple as it can be, without losing structure of read DNA.

3.1. Converting overlaps to dovetail overlaps

Original string graph implementation requires overlap dataset to only consist of dove-

tail overlaps. Previous chapter clearly describes that we do not have such overlaps

so conversion has to be done before we proceed to certain algorithms (string graph

creation, filtering contained reads, filtering transitive overlaps).

Visually, it is a very simple algorithm shown on the image 3.1.

Figure 3.1: Dovetailing algorithm.

Figure 3.2 represents overlap before and after conversion to dovetail overlap. Col-

ored parts on left side are representing original overlap, while colored parts on the right

side are representing new parts of overlap, added by “dovetailing” algorithm.

9

Figure 3.2: Overlap coordinates.

3.1.1. Input

Overlap start and end coordinates

3.1.2. Output

Hangs for dovetail overlaps.

3.1.3. Algorithm

Having coordinates defined as on Figure 3.2, algorithm implementation is pretty sim-

ple:

Algorithm 1 Algorithm for dovetailing overlaps
1: function CALCULATEFORCEDHANGS(a_lo, a_hi, a_len, b_lo, b_hi, b_len)

2: hangs← new_pair

3: hangs.first← a_lo− b_lo . a_hang

4: b_after ← b_len− b_hi . number of bases read b has after overlap

5: a_after ← a_len− a_hi . number of bases read a has after overlap

6: hangs.second← b_after − a_after . b_hang

7: return hangs

8: end function

3.1.4. Analysis

Time and memory complexity are both O(1) (memory allocation and a few arithmetic

operations)

The algorithm itself is very fast, but it can introduce an error if insertions or dele-

tions happened during sequencing phase. One of next subchapters explains how to

partially correct introduced error.

10

3.2. Filtering contained reads

Filtering contained reads is a method that removes all reads contained in some other

read from input dataset. Like previous chapter describes, sequences in dataset are of

different lengths, which makes following situation possible:

Figure 3.3: Read A is contained in read B.

Having that, read A can be removed without losing any information about genome

since read B and coincident overlaps contain super-set of read A information. Re-

moving read A is equivalent to removing all overlaps coincident with read A (grey

on picture above). Overlaps of contained reads should not be removed permanently,

though. Keeping information about them could be very useful in consensus phase.

3.2.1. Input

Array of dovetail overlaps.

3.2.2. Output

Array of overlaps coincident with non-containment reads.

11

3.2.3. Algorithm

Algorithm 2 Filtering overlaps coincident with contained reads
1: function FILTERCONTAINED(overlaps)

2: contained_reads← new_set . initialise set

3: for o← overlaps do
4: if o.a_hang ≤ 0 and o.b_hang ≥ 0 then
5: contained_reads← o.a . adds read a to contained_reads set

6: else if o.a_hang ≥ 0 and o.b_hang ≤ 0 then
7: contained_reads← o.b . adds read b to contained_reads set

8: end if
9: end for

10: idx← 0

11: for i← 0, overlaps.size do
12: o← overlaps[i]

13: if o.a in contained_reads then
14: continue
15: end if
16: if o.b in contained_reads then
17: continue
18: end if
19: overlaps[idx]← overlaps[i] . relocate valid overlaps

20: idx← idx+ 1

21: end for
22: overlaps.resize(idx) . remove all other overlaps

23: end function

We check if the combination of hanging values shows that read is contained. If it is,

we mark read as contained.

In second pass, we relocate overlaps coincident with non-contained reads to the

start of overlaps array, increasing position for next overlap each time.

At the end, we truncate all overlaps located after position idx.

3.2.4. Analysis

Having this method implemented as part of layout pipeline is of utmost importance. It

usually removes big portion of dataset, leaving the rest of the pipeline working with an

12

order of magnitude smaller dataset (shown in Chapter 5); ideally without losing any

information.

Time complexity of shown algorithm is O(N), where N is number of given over-

laps.

It is important to notice that every step of first loop is completely localised, inter-

acting only with current element. That allows us to introduce trivial parallelisation and

speed up the process.

The other pass, however, shares the access to idx value so it cannot be parallelised

that way.

3.3. Tuning dovetail overlaps

The algorithm written for converting arbitrary overlaps to dovetail overlaps forces ex-

tended overlapped parts on reads to be of same length, which is rarely correct. Approx-

imate overlap coordinates are good enough for most algorithms (filtering contained

reads, building string graph), but can be misleading for algorithms that are quite sensi-

tive to coordinate changes (like calculating overlap error rate).

The algorithm for tuning dovetail overlaps is the extension of dovetail conversion

algorithm. After the initial conversion happens, algorithm tries to shorten/extend hang-

ing parts of overlap.

Visually, it looks like moving blue dot left or right until an optimal solution is

found; shown on Fig. 3.4. Red part is utilized as a whole.

Figure 3.4: Representation of overlap "tuning".

The very same thing needs to be executed for the other end of the overlap (middle

of read B, start of read A).

Optimal solution for this problem can be found using dynamic programming with

algorithm very similar to the Needleman–Wunsch algorithm(Cammack et al.), but mod-

13

ified in a way it allows gaps at the end of a query (on the picture above read B i target

and read A is query).

Given algorithm (space and time complexity O(N2)) would be too slow for our use

case so we use modified problem - we change overlap coordinates in order to optimize

edit distance (edi) between overlapped parts; all using fast algorithm for edit distance

calculation (Myers, 1999) implemented in https://github.com/Martinsos/

edlib.

Downside of using algorithm that optimizes edit distance, instead of score in the

NW algorithm, is eagerness to find shorter overlaps as a result.

3.3.1. Input

An overlap defined with start and end coordinates for both reads.

3.3.2. Output

Dovetail overlap with more accurate coordinates.

3.3.3. Algorithm

We calculate “rough” dovetail overlap with method from this chapter.

After that, depending on overlap type (SP, PS, SS, PP), we call helper method that

tries to shrink given overlap on hanging ends.

Having positions tuned, we calculate hangs for new overlap, overlap error rate and

original overlap error rate. Knowledge of error rates before and after dovetailing can

help us detect overlaps that introduce new error during dovetailing process.

14

https://github.com/Martinsos/edlib
https://github.com/Martinsos/edlib

Algorithm 3 Tuning dovetail overlap coordinates
1: function GETTUNEDOVERLAP(overlap)

2: rough_hangs← CALCULATEFORCEDHANGS(o.a_lo, o.a_hi,

o.read_a_length, o.b_lo, o.b_hi, o.read_b_length)

3: tmp← OVERLAP(o.read_a, rough_hangs.first,

o.read_b, rough_hangs.second, o.is_innie) . temporary overlap we

use to detect overlap type

4: if tmp.is_using_suffix(a) and tmp.is_using_prefix(b) then
5: STRETCHSUFFIXPREFIXOVERLAP(o,&new_a_lo,&new_a_hi,

&new_b_lo,&new_b_hi,&added_edit_distance)

6: else if tmp.is_using_prefix(a) and tmp.is_using_suffix(b) then
7: STRETCHPREFIXSUFFIXOVERLAP(o,&new_a_lo,&new_a_hi,

&new_b_lo,&new_b_hi,&added_edit_distance)

8: else if tmp.is_using_prefix(a) and tmp.is_using_prefix(b) then
9: STRETCHPREFIXPREFIXOVERLAP(o,&new_a_lo,&new_a_hi,

&new_b_lo,&new_b_hi,&added_edit_distance)

10: else if tmp.is_using_suffix(a) and tmp.is_using_suffix(b) then
11: STRETCHSUFFIXSUFFIXOVERLAP(o,&new_a_lo,&new_a_hi,

&new_b_lo,&new_b_hi,&added_edit_distance)

12: end if
13: orig_err_rate← orig_edit_distance/o.length

14: err_rate← (orig_edit_distance+ added_edit_distance)/

(0.5 ∗ (new_a_hi− new_a_lo+ new_b_hi− new_b_lo))

15: real_hangs← CALCULATEFORCEDHANGS(new_a_lo, new_a_hi,

o.read_a_length, new_b_lo, new_b_hi, o.read_b_length)

16: return OVERLAP(o.read_a, real_hangs.first,

o.read_b, real_hangs.second, o.is_innie) . final overlap

17: end function

Method for fine tuning suffix-prefix overlap type looks like:

15

Algorithm 4 Calculating exact overlap edges
1: function STRETCHSUFFIXPREFIXOVERLAP(o, new_a_lo, new_a_hi,

new_b_lo, ∗new_b_hi, ∗edit_distance)

2: query_used_bases← −1
3:

4: new_a_hi← o.read_a_length

5: target← o.read_b.sequence

6: query ← o.read_a.sequence

7: x_edit_distance← EDITDISTANCESHW(query,

o.a_hi, target, o.b_hi,&query_used_bases)

8: new_b_hi← o.b_hi+ query_used_bases

9:

10: new_b_lo← 0

11: target← REVERSE(o.read_a.sequence.substr(0, o.a_lo))

12: query ← REVERSE(o.read_b.sequence.substr(0, o.b_lo))

13: o_edit_distance← EDITDISTANCESHW(query, 0,

target, 0,&query_used_bases)

14: new_a_lo← target.length− query_used_bases

15:

16: edit_distance← x_edit_distance+ o_edit_distance

17: end function

Other called methods are omitted in order to keep the length of the thesis readable.

EditDistanceSHW , method that calculates the optimal position for an overlap

end, has an interface is defined as:

i n t 3 2 _ t ed i tDis tanceSHW (s t r i n g& query , u i n t 3 2 _ t que ry_ lo ,

s t r i n g t a r g e t , u i n t 3 2 _ t t a r g e t _ l o , i n t * q u e r y _ b e s t _ e n d) ;

In words:

– query_lo is the position of the first character used in query

– target_lo is the position of the first character used in target

– query_lo and target_lo can be always set to 0, if preceded with extracting

exact substrings.

Underlying code calls SHW mode of edlib library, which performs semi-global

alignment. SHW mode does not penalize gap at the end of query.

16

Processing x part from the code above will use colored parts of strings, like shown

on Fig. 3.5.

Figure 3.5: Extending/shrinking an overlap end during "tuning" phase.

query_best_end is actually the position of blue dot that can be placed anywhere

on the blue line.

Actual implementation can be found on https://git.io/vz1Zw.

3.3.4. Analysis

The time complexity is still O(NxM) (where N and M are lengths of strings passed

to SHW function), but the actual implementation is fast because it is using fast Myers

algorithm (NxM/64 on 64-bit computers).

Unfortunately, edit distance is a bad choice for scoring metric because it always

tries to shorten the overlap (except when we have a perfect overlap), which is almost

of no use here.

This algorithm can be omitted from a pipeline without major effect on final results.

3.4. Filtering transitive overlaps

Another example of information overhead is transitive overlap. One of them is shown

on Figure 3.6.

Figure 3.6: Overlap AC is transitive to AB and BC.

Overlap AC is transitive to overlaps AB and BC. Removing overlap AC will not

break any walks in string graph so it can be safely removed. Although, existence

of transitive overlap AC lowers the probability of overlaps AB and BC being falsely

reported overlaps.

17

https://git.io/vz1Zw

Figure 3.7: String graph representing transitive overlap shown on Fig. 3.6.

Removing transitive overlaps can be done before the string graph construction or

as part of bubble popping algorithm (explained later in this chapter). Ra-integrate is

not started from scratch and we have inherited code for removing transitive overlaps.

Detailed algorithm explanation and analysis can be found in (Rahle, 2014), where

author explains his implementation of position based algorithm for transitive reduction

(Simpson i Durbin, 2010), improved with merge-sort technique.

3.4.1. Input

List of dovetail overlaps.

3.4.2. Output

List of non-transitive dovetail overlaps.

3.4.3. Analysis

Time complexity is O(MK), where M is number of all overlaps and K average num-

ber of overlaps per read. We expect number K to be approximately the same as cover-

age of dataset.

3.5. Filtering short overlaps

During development and initial testing of ra-integrate, it turned out to be very useful to

filter overlaps that cover very small portion of reads. Hereof, we defined algorithm that

removes all overlaps covering less than X% of any coincident read. This filter is the

simplest filter and removes some amount of noise (example will be given in Chapter

5). Algorithm implementation is trivial and will not be explained. Implementation can

be found on https://git.io/vz1cL.

18

https://git.io/vz1cL

3.6. Filtering erroneous overlaps

Assembling genomes from error-prone reads brings many challenges. Beside difficul-

ties with finding any overlaps, it is also difficult to decide which overlaps are real and

which are falsely reported. Since owler reports some number of false positive overlaps,

we have to filter them out to ensure we are dealing with correct data as much as we

can.

A simple technique we use here is removing all overlaps with error rate higher than

X . X is a value provided to the algorithm and it needs to be chosen based on overlaps

error rate distribution.

Error rate is calculated during “tuning” dovetail overlaps, defined as:

error_rate = overlap_edit_distance/overlap_length.

3.6.1. Input

List of overlaps, X.

3.6.2. Output

List of overlaps, without overlap with error rate higher than X.

3.6.3. Algorithm

Algorithm 5 Algorithm for filtering erroneous overlaps
1: function FILTERERRONEOUSOVERLAPS(overlaps, x)

2: idx← 0

3: for i← 0, overlaps.size do
4: if overlaps[i].error_rate ≥ X then
5: continue
6: end if
7: overlaps[idx]← overlaps[i]

8: idx← idx+ 1

9: end for
10: overlaps.resize(idx) . Remove the rest of overlaps

11: end function

19

3.6.4. Analysis

Time complexity of written algorithm is O(N), where N is number of overlaps. While

the algorithm is simple, choosing right X can be quite difficult. For purposes of this

thesis, we analysed datasets by hand and picked X for each dataset to get decent re-

sults. Better solution would be automated analysis of a dataset and choosing X that

would remove noise (and ideally just noise).

3.7. Graph creation

So far we were doing fine without having any graph implementation. For following

algorithms it is handy to have our data structured as a graph. For the purpose of this

thesis, we are using modified implementation of Robert Vaser’s graph (Vaser, 2015)

because it was part of project we have inherited.

Different from String Graph implementation, every read is represented with one

node (instead of one node for read start and one node for read end). Every overlap is

represented with two edges: one for A > B and another one for B > A.

Also:

– all vertices are stored in vertices collection

– all edges are stored in edges collection

– every edge has its pair edge (pair edges are built from same overlap)

– every edge is added to its source vertex, via vertex.add_edge method.

If we take an example from subchapter explaining transitive overlaps, our graph is

shown on Fig. 3.8.

Figure 3.8: String graph example.

Internally, every node keeps two collections of edges, one for edges that use read’s

start (edges_b) and another one that keeps edges that use read’s end (edges_e); for the

sake of faster iteration.

20

3.7.1. Input

Vector of overlaps, vector of reads.

3.7.2. Output

String graph.

3.7.3. Algorithm

For the sake of simplicity, we assume reads are having ids 0, 1, 2, 3...

Algorithm 6 Algorithm for creating a graph from overlaps
1: function CREATEGRAPH(reads, overlaps)

2: graph← new_graph

3: for i← 0, reads.size do
4: graph.vertices← VERTEX(reads[i]) . adds a new vertex

5: end for
6: for i← 0, overlaps.size do
7: o← overlaps[i]

8: edge_a← EDGE(graph.edges.size, o, o.a) . edge_id, overlap, source

9: graph.edges.push_back(edge_a)

10:

11: edge_b← EDGE(graph.edges.size, o, o.b)

12: graph.edges.push_back(edge_b)

13:

14: graph.vertices[o.a].edges.push_back(edge_b) . adds edge_b to vertex

made from read a

15: graph.vertices[o.b].edges.push_back(edge_a)

16:

17: edge_a.pair ← edge_b . link edges

18: edge_b.pair ← edge_a

19: end for
20: return graph

21: end function

As seen in code, every edge accepts following arguments on construction: edge_id,

overlap, source (destination can be calculated from overlap and source).

21

Actual implementation of add_edge:

Algorithm 7 Adding an edge to a vertex
1: function VERTEX.ADDEDGE(edge)

2: using_suffix← EDGE.OVERLAP.IS_USING_SUFFIX(this.get_id)

3: if using_suffix = true then
4: edges_e.PUSH_BACK(edge)

5: else
6: edges_b.PUSH_BACK(edge)

7: end if
8: end function

is_using_suffix returns true if overlap uses given reads suffix (considering orig-

inal sequence even if read is used as reveresed complement).

3.7.4. Analysis

Given algorithm for graph creation executes within space and time complexity of

O(N +M), where N is number of nodes, and M is number of overlaps.

3.8. Graph simplification

Pseudo code below represents overall method for graph simplification. Non-obvious

methods are explained in following subchapters.

Algorithm 8 High-level graph simplification algorithm
1: function SIMPLIFY(graph)

2: while graph changes do
3: REMOVENODESWITHNOEDGES(graph)

4: TRIM(graph)

5: POPBUBBLES(graph)

6: end while
7: end function

3.9. Trimming (tips)

Due to errors in sequencing process, it is possible that our graph looks like on Fig. 3.9.

22

Figure 3.9: Example of tip in string graph (node F).

Node F is considered as a tip and it is usually very safe to remove it. We are

omitting explanation of tip removal algorithm since we use inherited implementation

from RA project. Original explanation can be found in (Vaser, 2015).

3.9.1. Input

String graph.

3.9.2. Output

String graph without tips.

3.10. Bubble popping

After having all previous steps done, majority of noise and redundancy should have

been removed. However, it is possible that we have situation shown on image 3.10.

Figure 3.10: Simple bubble.

Structure made of walks B − F −G−E and B − C −D −E is called a bubble.

It usually occurs because of sequencing errors and it is very possible that error-prone

reads will lead to graphs with many bubbles.

Also, when dealing with error-prone reads without correction, another possible,

more complex situation is shown on Fig. 3.11.

3.10.1. Input

String graph.

23

Figure 3.11: Complex bubble.

3.10.2. Output

String graph without bubbles.

3.10.3. Algorithm

The algorithm we have created is effective in removing both types of bubbles.

It tries to find a bubble starting from every node that has more than one outgoing

edge (on first node example nodes B and E). Such node will be called start node. A

bubble is considered to be found when all possible walks starting from start node can

end in some other node, called sink.

Finding a bubble starts with creating a walk for every outgoing edge of start node.

Using the second bubble example (Fig. 3.11) and having node B as start node, it

creates walks B−C and B−D. In every iteration each walk is extended by one edge,

and forked if needed. All walks are placed in some collection so we can backtrack

later.

In first iteration, walk B − C is extended to B − C − E, while B − D is forked

and extended to B−D−E and B−D−F ; our walks are [B−C −E, B−D−E,

B −D − F]. At the end of iteration we check if sink is found (it is not this case).

In second iteration we extend our walks to [B − C − E − G, B − D − E − G,

B −D − F −G], respectively. Node G is sink because all walks can end in node G.

Detecting a sink is implemented by counting how many walks end in certain node.

When N is current size of walks collection and N walks can end in node X , X is

24

considered as the sink. It is heuristics that allows fast detection of bubbles where

walks are not of same length (imagine having a way from G to E with a node in the

middle), but is error prone to graphs with loops (a loop can end in node X multiple

times and trick algorithm to decide it is a sink). We have not hit a problem on datasets

we used using this algorithm and trade-off we made using this heuristics proved as a

good one.

Algorithm has to be stopped at some point so we are introducing MAX_STEPS

constant that terminates the algorithm if nothing is found after MAX_STEPS itera-

tions. Having that, we do not have to tackle loops as separated edge case.

Once we detect node with more than one outgoing edge, we call an algorithm

defined with following pseudo-code:

25

Algorithm 9 Finding bubbles in string graph
1: function FINDBUBBLES(Node start_node, bool direction)

2: walks← new_list

3: ends_in← new_hash . ends_in[x] number of paths ending in x

4: if direction = 1 then
5: edges← start_node.edges_e

6: else
7: edges← start_node.edges_b

8: end if
9: walks.push_back(WALK(start_node))

10: for i← 0,MAX_STEPS do
11: dead_walks← 0 . Reset dead walks counter

. Set loop size upfront so new walks are skipped in the same iteration when

they are added

12: walks_size← walks.size

13: if walks_size > MAX_WALKS then
14: break
15: end if
16: for j ← 0, walks_size do
17: walk ← walks[j]

18: extended_walks← EXTENDWALK(walk)

19: if extended_walks.size = 0 then . Walk is dead end

20: dead_walks = dead_walks+ 1

21: continue
22: end if
23: walks[j] = new_walks[0] . replace old walk with extended one

24: for k ← 1, new_walks.size do . add walks created by fork to the end

25: walks.push(new_walks[k])

26: end for

26

27: for new_walk ← new_walks do
28: ends_in[new_walk.head] + + . Update counter for walk ends

29: if ends_in[new_walk.head] = walks.size then
30: return walks . Bubble is found

31: end if
32: end for
33: end for
34: if dead_walk = walks_size then
35: break
36: end if
37: end for
38: return []

39: end function

Function extend_walk returns extended walk; or walks if fork happened (walk is

represented with a start node and following edges that form a walk). In example we

have, for walk B−C it returns [B−C−E], while for B−D returns [B−D−E,B−
D−F] (because D has 2 outgoing edges). If extend_walk can not extend given walk,

it returns [] and that walk is marked as dead walk (lines 19-21).

Once we have all walks forming a bubble (function popBubble returns array of

walks), we shorten them to look like start − ... − sink. In example we have above

there is no need for that since all walks end in sink node - node G.

Next step is to choose a base walk. Base walk is a walk we believe to be the most

correct walk that truly represents that part of genome. As metric of correctness we use

total walk coverage, defined as sum of read coverages on that walk.

After choosing the base walk, we have to check if it is a bubble that represents

one part of DNA strand or genome really has such structure (diploid genomes). For

that purpose, we use new metric difference = edit_distance/length - between ev-

ery walk and base walk, having defined maximum error that we allow - Y . Maxi-

mum allowed error should depend on dataset properties and expected error rate. If

difference > Y , we mark all edges on that walk for removal.

Edge e can be removed from a graph once we are sure that we wanted to remove

all the walks that could use edge e.

Actual code is quite complicated so we are bringing simplified pseudo-code. Real

implementation can be found on https://git.io/vgce0.

27

https://git.io/vgce0

Algorithm 10 Popping a bubble from given walks
1: function POPBUBBLE([]walk bubble_walks, double Y)

2: best_coverage← 0

3: for walk ← bubble_walks do . Find the base walk

4: if coverage(walk) > best_coverage then
5: best_coverage← coverage(walk)

6: base_walk ← walk

7: end if
8: end for
9: for walk ← bubble_walks do . Find the base walk

10: if walk = base_walk then
11: continue
12: end if
13: if DIFFERENCE(walk,main_walk) > Y then
14: continue
15: end if
16: for edge← walks.edges do
17: MARKFORREMOVAL(edge)

18: if REMOVEDFROMALLPATHS(edge) then
19: REMOVEEDGE(edge)

20: end if
21: end for
22: end for
23: end function

Considering code complexity, bubble popping turned out to be the most complex

method.

In chapter about filtering transitive overlaps we noted that the same goal can be

done with bubble popping algorithm. From Fig. 3.7 it is very obvious that every

transitive overlap (with two other overlaps it is transitive to) would form a bubble, but

the algorithm for removing bubbles is far slower in detection and removal than the

algorithm dedicated just for transitive overlaps removal.

28

3.10.4. Analysis

As said, bubble popping is the most complex algorithm in layout phase, time com-

plexity wise, memory complexity wise and implementation complexity wise. Since

we use MAX_STEPS parameter, we limit global number of expanded paths with

MAX_WALKS argument. Still, complexity for finding a potential bubble is O(N ∗
MAX_WALKS), where N stands for number of nodes in a graph. Once potential

bubble is found, we have to compare each walk to base walk. That comparison takes

O(MAX_WALKS ∗ M2) (one comparison per path), where M is maximal path

length (base-wise, not node-wise length).

However, algorithm proved to be very efficient and it pops tens of bubbles in datasets

used, as shown in Chapter 5.

3.11. Extracting unitigs

Once we have done everything we can to remove noise and linearise graph into a single

walk, next step is to extract high-fidelity sequences - unitigs. As seen in Chapter 5, it

is common that previous steps untangled the graph in a way that makes some unitigs

pretty obvious. Extracting a part of graph could give us image like shown on Figure

3.12.

Figure 3.12: Obvious unitig.

With assumption that we have removed all false positive reported overlaps from

our dataset, sequence created from walk A − B − C − D − E − F is high-fidelity

because there are no forks on mentioned walk. Therefore, walk A−B−C−D−E−F
makes an unitig.

Also, there are some less obvious potential unitigs. Celera assembler (available at

http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR) is

using best overlap graph, graph where some forks are resolved if two nodes in a fork

are “best buddies” to each other. In that case, fork is linearised and best buddies be-

come part of the same unitig.

Two nodes A and B are best buddies if overlap with another node is the longest

overlap for that side of node.

29

http://wgs-assembler.sourceforge.net/wiki/index.php/PBcR

3.11.1. Input

String graph.

3.11.2. Output

List of unitigs, defined as start read and overlaps.

3.11.3. Algorithm

Algorithm is quite simple. At the very start, every node is its own unitig. Iteration over

nodes checks if node is already part of some known unitig, and if not, it starts building

a new one. Process goes in both directions.

At the end, every node is part of one and only one unitig.

Algorithm 11 Extracting unitigs
1: function EXTRACTUNITIGS(graph)

2: visited_nodes← new_hash

3: unitigs← new_list

4: for node← graph.nodes do
5: if node in visited_nodes then
6: continue
7: end if
8: edges← new_list

9: GETEDGES(edges, visited_nodes, node,DIRECTION_LEFT)

10: REVERSE(edges) . Reverse edges because we will return unitig going in

other direction

11: GETEDGES(edges, visited_nodes, node,DIRECTION_RIGHT)

12: unitigs.add(edges.first.src, edges)

13: end for
14: return unitigs

15: end function

3.11.4. Analysis

Time complexity of written algorithm is O(N), where N is number of nodes. Al-

gorithm visits every node exactly once. Memory complexity of the algorithm is also

O(N), since every node will become part of one and only one unitig.

30

16: function GETEDGES(dst_edges, visited_nodes, start, start_direction)

17: use_suffix← start_direction

18: curr_node← start

19: while true do
20: visited_nodes.add(curr_node)

21: edge← curr_node.best_edge(use_suffix)

22: if edge = null then
23: continue
24: end if
25: if edge.overlap.is_innie then . change direction if overlap is SS or PP

26: use_suffix← 1− use_suffix

27: end if
28: next← edge.dst

29: if next.best_edge(1− use_suffix).overlap()! = edge.overlap then
30: break . Break if curr and next are not best buddies

31: end if
32: edges.push_back(EDGE(edge))

33: if next in visited_nodes then
34: break . If read is already part of some other unitig

35: end if
36: curr_note← next

37: end while
38: end function

31

3.12. Extracting contigs

Contigs are sequences that are wild guesses of genome final image. Usual procedure

would be to create unitig graph (graph made from unitigs and edges between them) and

extract unitigs as walks through that graph. Unfortunately, during work on this thesis

there was not enough time to develop such a method so we are bringing modified high-

level explanation of modified method inherited from Ra project. Described method

does not have any sense of unitigs and it works exclusively on string graph.

3.12.1. Input

String graph.

3.12.2. Output

Contig, defined as start node and edges.

3.12.3. Algorithm

Algorithm 12 Extracting contigs
1: function EXTRACTCONTIG(graph)

2: start_candidates← FINDSTARTCANDIDATES(graph)

3: for candidate← start_candidates do
4: if longest_walk = nil||walk.length > longest_walk.length then
5: longest_walk ← walk

6: end if
7: end for
8: return longest_walk

9: end function

Function find_start_candidates returns up to MAX_START_CANDIDATES

start candidates. Only forks and tips are considered as good start candidates. Also,

there is a case when genome is circular and we get perfect assembly before this step.

In that case every node is a good start candidate.

Function find_longest_walk is exhaustively seeking for the longest walk under

following boundaries:

– every node is visited at most once in a walk

32

– if there is a fork, quality of used overlap has to be inside certain boundaries,

derived from best overlap quality (1−QUALITY _THRESHOLD)

– for the sake of speed and feasibility, algorithm stops after MAX_FORKS

number of forks

If last boundary was not there, function find_longest_walk would try to find every

possible walk in the graph in order to return the longest one. Since complexity of this

problem has exponential nature, we added the last boundary to limit the execution time

(the algorithm complexity stayed the same).

Original implementation can be found on https://git.io/vz1Xy.

3.12.4. Analysis

Time complexity of algorithm is exponential, since it is trying to find the longest walk

in a graph.

3.13. General layout algorithm

At the end of this chapter, we are bringing pseudo-code of high-level algorithm:

Algorithm 13 High-level layout algorithm
1: function LAYOUT

2: reads← READREADS

3: overlaps← READOVERLAPS

4: CONVERTTODOVETAIL(overlaps)

5: FILTERCONTAINERREADS(overlaps)

6: TUNEDOVETAILOVERLAPS(overlaps)

7: FILTERTRANSITIVEOVERLAPS(overlaps)

8: FILTERSHORTOVERLAPS(overlaps)

9: FILTERERRONEOUSOVERLAPS(overlaps)

10: graph← CREATEGRAPH(reads, overlaps)

11: SIMPLIFYGRAPH(graph)

12: WRITEUNITIGS(graph, file)

13: WRITECONTIGS(graph, file)

14: end function

33

https://git.io/vz1Xy

4. Implementation

This chapter covers rough overview of implementation decomposition, used technolo-

gies, brief story about tangled project history and instructions for running assembly

process yourself.

4.1. Project history

History of this project is pretty tangled, but never left rooms and minds of FER. Lay-

out development started with (Rahle, 2014). It consisted just of filtering contained

reads and transitive overlaps. After some time Marko Čulinović implemented basic

algorithms for trimming and bubble popping, basis for assembling more complicated

genomes and dealing with non-perfect datasets. That project was just a rough skele-

ton of what we have today; code available at https://git.io/vz1Mm. Fixing

few bugs led us to position where we were able to assemble smaller parts of HIV,

but nothing was properly tested and validated. Robert Vaser decided to rewrite the

whole project to get his RNA assembler up and running and published his work on

https://git.io/vz1Mz. This project, made for the purpose of this thesis, is a

fork of ra project, coupled with some runner scripts and GraphMap overlapper (owler

module) into ra-intergrate project. 4 projects and 5 repositories later, inheriting some

technical debt from all previous projects, located on https://git.io/vz1yu

(v0.9), we have an assembler able to assemble Escherichia coli genome in one con-

tig.

4.2. Used technologies

Most of the codebase is written in C++ for the sake of speed and freedom it gives. Some

runner scripts are written in Ruby1 (main script wrapping entire process of assembling

1https://www.ruby-lang.org/en/

34

https://git.io/vz1Mm
https://git.io/vz1Mz
https://git.io/vz1yu
https://www.ruby-lang.org/en/

a genome).

We used GoogleTest 2 as unit testing framework.

GraphViz 3 is external dependency used for plotting graphs.

Since project grew over time, we needed something for automated building so we

chose Make 4 tool and Travis CI 5 for making sure that every build passes all defined

tests.

Docker 6 helps us to provide a “package” for the project and make sure that one

does not need to install all dependencies and pollute their environment.

During development, we used Gepard (Krumsiek, 2007) tool to visually check

whether assemblies are correct.

4.3. Supported input and output formats

Ra-integrate supports fasta and fastq files for defining reads. Since GraphMap writes

results in MHAP format, we read overlaps from MHAP format (hidden in wrapper

scripts). Output is written in several files

– unitig sequences (fasta)

– contig sequences (fasta)

– assembly (AFG 7)

– string graph layout (dot language 8)

4.4. Modules

Ra-integrate (wrapper project) consists of two projects: GraphMap and Ra (forked).

Ra project again is decoupled into more than few modules:

unitigger implements bubble popping, trimming, extracting unitigs and contigs

overlap2dot transforms overlaps from depot into dot definition of assembly graph

zoom (debug) takes overlaps and returns neighbourhood of given size for given node
2https://github.com/google/googletest
3http://www.graphviz.org/
4https://en.wikipedia.org/wiki/Make_(software)
5https://travis-ci.org/
6https://www.docker.com/
7http://amos.sourceforge.net/wiki/index.php/Message_Types
8http://www.graphviz.org/doc/info/lang.html

35

https://github.com/google/googletest
http://www.graphviz.org/
https://en.wikipedia.org/wiki/Make_(software)
https://travis-ci.org/
https://www.docker.com/
http://amos.sourceforge.net/wiki/index.php/Message_Types
http://www.graphviz.org/doc/info/lang.html

filter_contained filters overlaps of contained reads from given set

filter_transitive filters transitive overlaps

widen_overlaps converts MHAP overlaps into dovetail overlaps

filter_erroneous_overlaps filters all overlaps shorter than X% or with error rate higher

than Y%

depot import/export tool for centralised depot, used by other components

fill_read_coverage analyzes overlaps in order to calculate coverage for each read

4.5. Stats

Some interesting stats from the project:

– 6 people involved

– 480 commits

– 135,396 lines added, 22,308 lines removed during work (GitHub metrics)

– numerous bugs fixed (unfortunately, we have not tracked them)

– 22,834 lines of code in total (GoogleTest not included).

4.6. Installation and running

The shorter this subchapter is, the better job is done.

Requirements:

– Some distribution of Linux

– Ruby 2.2 or newer

– Make

– g++ (4.8 or later)

– GraphViz (for getting a string graph representation at the end of assembly)

You can get and install ra-integrate by typing following command:

g i t c l o n e −− r e c u r s i v e \

h t t p s : / / g i t h u b . com / m a r i o k o s t e l a c / ra− i n t e g r a t e . g i t

make

36

Once you have your reads ready in fasta or fastq format, run the assembly process

with:

. / s c r i p t s run r e a d s . f a s t a −s s p e c s _ f i l e

Defining specs_file is completely optional. All settings that can be modified in

specs file can be found in readme file of ra-integrate project itself.

37

5. Testing and results

5.1. Hardware and software

All tests were run on Assembly - one of FER computers, whose characteristics are:

1. Hardware

– Architecture: x86_64

– Number of CPUs: 2

– CPU model name: Intel(R) Xeon(R) CPU E5645

– Cores per CPU: 6

– CPU GHz: 2.40

– RAM: 296GB

2. Software

– OS: Ubuntu 14.04.2 LTS

– Kernel: 3.13.0-71-generic

– ra-integrate: v0.9

All measurements are times extracted from log files created by forwarding stderr

stream to a file. Provided times rely on system clock and they are (un)reliable as the

unix time tool itself, standard for measurements like this one. Despite of Assembly’s

shared nature, for the purpose of fairness and correctness, all tests were run when there

was no other users, just few background services running (their CPU and memory

consumption are not comparable to ra-integrate consumption).

5.2. Datasets

For the purpose of demonstrating effectiveness of implemented methods, we are using

two datasets, both results of sequencing samples of Escherichia coli. They are repre-

38

sentative examples of datasets from two competitive companies. First dataset show-

cases very long, single-molecule PacBio data with a sample of a E. coli K12 MG1655

strain. Dataset can be downloaded from https://git.io/vz1Sn. Mean length

of the sequences is 3549bp and coverage 19.96x.

To show effectiveness on Oxford Nanopore datasets, we decided to use Oxford

Nanopore MinION dataset from (Loman et al., 2015). Converted dataset can be found

on http://www.cbcb.umd.edu/software/PBcR/data/sampleDataOxford.

tar.gz, while original set is available on http://www.ebi.ac.uk/ena/data/

view/ERP007108. Dataset consists of 2D reads prepared with R7.3 chemistry.

Mean coverage is 30x.

Sequence length distributions are shown on images 5.1 and 5.2.

Reference sequence can be found on http://www.ncbi.nlm.nih.gov/nuccore/

U00096.2.

Figure 5.1: Sequence length distribution - MinION dataset.

5.3. Dot plot as a verification method

"In bioinformatics a dot plot is a graphical method that allows the comparison of two

biological sequences and identify regions of close similarity between them. It is a type

of recurrence plot." (dot).

39

https://git.io/vz1Sn
http://www.cbcb.umd.edu/software/PBcR/data/sampleDataOxford.tar.gz
http://www.cbcb.umd.edu/software/PBcR/data/sampleDataOxford.tar.gz
http://www.ebi.ac.uk/ena/data/view/ERP007108
http://www.ebi.ac.uk/ena/data/view/ERP007108
http://www.ncbi.nlm.nih.gov/nuccore/U00096.2
http://www.ncbi.nlm.nih.gov/nuccore/U00096.2

Figure 5.2: Sequence length distribution - PacBio dataset.

It organizes sequences (a and b) in two dimensional space, one sequence per axis;

one on x-axis, one on y-axis. When two parts of sequences match, a point is drawn on

that position. The simplest example would be drawing a picture of similarity matrix

A, where

A[x, y] =

1, if a[x] = b[y]

0, otherwise
(5.1)

Position x, y would be black if A[x, y] = 1, otherwise it would stay white.

It is very obvious that identical sequences would form a diagonal line starting from

(0, 0) and ending in (x, x) (example shown on Fig. 5.3). Drawing dot plot of random

sequences looks just like a noise on white (shown on Fig. 5.4). Dot plot of sequences

AAAA and AAAA would be black 4x4 image (because every position matches every

position).

Drawing dot plots for comparisons of real biological sequences gets more difficult.

Calculating exact matrix A is taking O(NxM) time, which is usually too slow. Also,

it is very convenient to match sequences a and b, but also a and reversed complement

of b.

Gepard tool has lower-complexity matching implemented and is drawing both

comparisons on the same graph (Krumsiek, 2007).

40

Figure 5.3: Dot plot of identical sequences.

Figure 5.4: Dot plot of randomly picked sequences.

In this thesis we used dot plot as verification method. If dot plot looked good,

we considered assembly process successful. Bad side of using dot plot as verification

method is need for manual action.

5.4. MinION E. coli dataset - default parameters

Overall assembly was finished in 7 minutes and 46 seconds. From the table 5.1 it is

visible that biggest part of time is spent on calculating overlaps with owler (6 minutes

and 7 seconds).

The whole pipeline used 12 threads, which is the number that equals to number of

physical cores on the computer we have used for testing.

We are bringing some numbers to get a feeling of which stages reduced dataset size

by what portion:

41

Table 5.1: Dissection of assembler run-time on MinION dataset.

Phase Duration

GraphMap owler 6 minutes, 7 seconds

Filling depot with reads 0 minutes, 3 seconds

Filling depot with overlaps 0 minutes, 6 seconds

Calculating read coverage 0 minutes, 4 seconds

Filtering contained reads 0 minutes, 4 seconds

Creating dovetail overlaps 0 minutes, 30 seconds

Filtering erroneous reads 0 minutes, 4 seconds

Filtering transitive overlaps 0 minutes, 4 seconds

Unitigger 0 minutes, 36 seconds

Drawing graphs 0 minutes, 36 seconds

– layout process started with 470954 overlaps.

– 98.56% overlaps were filtered due to being coincident with contained reads

– 111 overlaps (1.64%) were filtered because they did not look like reads that

could be transformed to dovetail overlaps (at least one detected end was more

than 10% of overlap length far from read ends)

– 20 overlaps were filtered because they were detected as overlaps coincident

with contained reads; after being converted to dovetail form

– 827 overlaps (12.44%) were filtered because they covered less than 15% of

coincident read length

– 55 overlaps were filtered because their error rate was higher than 40%

– 71.04% (of remaining 5764) overlaps were detected as transitive overlaps

– 79 bubbles detected and removed

– 3 tips removed

Since no consensus step is implemented and no error correction on reads is done,

there is no much sense in high-accuracy sequence difference calculation (error will

stay the same as reads error rate).

From the Fig. 5.5 it is clear that reference and assembled genomes are matching

pretty well. Assembled genome is covering whole reference genome. Visual check

does not point to any misassemblies and genome lengths are of insignificant difference

(< 1%).

42

Figure 5.5: Alignment between E.coli reference genome (x− axis) and assembly result (y −
axis).

Archive containing all the data (including depot and run logs) can be downloaded

on http://mariokostelac.com/thesis/ox.html.

5.5. Pacbio E. coli dataset - default parameters

Overall assembly lasted for 10 minutes and 51 seconds. Distribution of times spent in

each phase is very similar to the ones in the first dataset and it can be extracted from

logs.

As run on previous dataset, maximum 12 threads were used for parts that are using

leverage of multi-core systems.

We are bringing some numbers to get a feeling of which stages reduced dataset size

by what portion:

– layout process started with 382668 overlaps

43

http://mariokostelac.com/thesis/ox.html

– 97.82% overlaps were filtered due to being coincident with contained reads

– 154 overlaps (1.85%) were filtered because they did not look like reads that

could be transformed to dovetail overlaps (at least one detected end was more

than 10% of overlap length far from read ends)

– 8 overlaps were filtered because they were detected as overlaps coincident with

contained reads; after being converted to dovetail form

– 1389 overlaps (16.98%) were filtered because they covered less than 15% of

coincident read length

– 66 overlaps were filtered because their error rate was higher than 40%

– 69.49% (of remaining 6723) overlaps were detected as transitive overlaps

– 82 bubbles detected and removed

– 246 tips removed

At the end, 23 unitigs were found, all part of one connected graph component.

Extracted contig is about right length (4,349,490bp), but Fig. 5.6 shows that it is

broken on several places.

Archive containing all the data (including depot and run logs) can be downloaded

on http://mariokostelac.com/thesis/pb_default.html.

5.6. Pacbio E. coli dataset - modified quality_threshold

parameter

As seen in previous subchapter, assembly results for PacBio dataset were not satisfying

so we tried to modify some parameters to get better results. This time we reused

calculated overlaps (from last run) because we have not changed any parameters that

could affect overlapping phase.

The only parameter we changed is quality_threshold. It affects the contig ex-

traction algorithm by deciding whether some overlap (if coming from fork) should be

considered as next one - based on its quality (as defined in Chapter 4). Default value

is 1.00 and it implies that the only factor voting for next overlap in fork is actually

maximum length reached from the fork.

After setting that parameter to 0.6, we restricted the choice of overlaps to the ones

whose quality is at most 60% less than the best overlap in certain fork.

44

http://mariokostelac.com/thesis/pb_default.html

Figure 5.6: Alignment between E.coli reference genome (x− axis) and assembly result (y −
axis); PacBio dataset, quality_threshold = 1.0.

Fig. 5.7 shows that extracted contig is quite better, which implies that assembler

did not lose too much information about the contig; it just was not able to extract the

contig because of the noise in remaining data. It is not perfect (has one big break), but

it is far better than result in previous chapter.

Archive containing all the data (including depot and run logs) can be downloaded

on http://mariokostelac.com/thesis/pb_quality.html.

5.7. Comparison with minasm

In November of 2015 Heng Li started the miniasm project (https://git.io/

vgcWL). The idea behind the project is very similar to the work presented in this thesis

- assembling genomes from long error-prone reads without correcting them upfront.

The implementation is quite fast and results seem promising. We have runned

minasm with default parameters from readme file.

45

http://mariokostelac.com/thesis/pb_quality.html
https://git.io/vgcWL
https://git.io/vgcWL

Figure 5.7: Alignment between E.coli reference genome (x− axis) and assembly result (y −
axis); PacBio dataset, quality_threshold = 0.6.

Running miniasm on ONT dataset lasted for 17 seconds. Alignment with refer-

ence genome is shown on Figure 5.8.

Running miniasm on PacBio dataset lasted for 15 seconds. Alignment with refer-

ence genome is shown on Figure 5.9.

46

Figure 5.8: Alignment between E.coli reference genome (x − axis) and miniasm assembly

result (y − axis); ONT dataset

Figure 5.9: Alignment between E.coli reference genome (x − axis) and miniasm assembly

result (y − axis); PacBio dataset

47

6. Conclusion

At the time when this thesis work has started, there were no published papers or drafts

on assembling genomes from long, error-prone reads without error-correction upfront.

Error-correction is a very expensive process and, while it is feasible solution for smaller

genomes like E.coli, it does not scale well for species with longer DNA strands. This

thesis proves that it is possible to assemble genomes exclusively from long, error-prone

reads, without any read correction upfront.

Performance-wise, the assembler developed for this thesis can be a lot faster than

it is. Most parts are not multi-threaded, big portion of time is spent on IO operation

(because of pipeline architecture) and project itself is carrying technical debt of four

projects before.

Correctness of assembly can be improved, too. We have shown that even a simple

technique can help with filtering noise from dataset, but second dataset (PacBio E.coli)

showed that few bad overlaps can lead to extraction of completely faulty contigs.

The thesis has also shown that same base algorithms can be used for assembling

genomes from long reads, error-prone reads.

Several areas could lead to qualitative improvements on final results. First area is

filtering erroneous reads, based on coverage or overall coincident overlaps error rate.

That method would clear sources of erroneous overlaps in very early phase. Second

area for improvement is extraction logic. Current logic is greedy and favors length

over quality. Even with quality_threshold factor included, it has its flaws. Better

approach would be extracting unitigs and using them as starting point for new graph -

unitig graph. Contigs could be just walks in that new graph.

The miniasm project shows that the whole process can be much faster. Unfortu-

nately, we did not have enough time to compare algorithm differences, but this thesis

and miniasm indicate that assembling genomes from long error-prone reads is possi-

ble.

48

BIBLIOGRAPHY

Dot plot. https://en.wikipedia.org/wiki/Dot_plot_

(bioinformatics). Accessed: 2016-01-25.

Edit distance. https://en.wikipedia.org/wiki/Edit_distance. Ac-

cessed: 2016-01-24.

Human genome project. https://en.wikipedia.org/wiki/Human_

Genome_Project. Accessed: 2016-01-24.

Hybrid genome assembly. https://en.wikipedia.org/wiki/Hybrid_

genome_assembly. Accessed: 2016-01-24.

Mhap output specification. http://mhap.readthedocs.org/en/stable/

quickstart.html#output. Accessed: 2016-01-24.

Overlaps specifications. http://wgs-assembler.sourceforge.net/

wiki/index.php/Overlaps. Accessed: 2016-01-24.

Graphmap owler. https://github.com/isovic/graphmap/blob/

master/overlap.md. Accessed: 2016-01-24.

Dna: nanopore sequencing. https://nanoporetech.com/applications/

dna-nanopore-sequencing. Accessed: 2016-01-24.

RunCA: Dissection. http://wgs-assembler.sourceforge.net/wiki/

index.php/RunCA_Dissection. Accessed: 2016-01-24.

Solid-state nanopores. https://nanoporetech.com/

science-technology/introduction-to-nanopore-sensing/

solid-state-nanopores. Accessed: 2016-01-24.

49

https://en.wikipedia.org/wiki/Dot_plot_(bioinformatics)
https://en.wikipedia.org/wiki/Dot_plot_(bioinformatics)
https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Human_Genome_Project
https://en.wikipedia.org/wiki/Human_Genome_Project
https://en.wikipedia.org/wiki/Hybrid_genome_assembly
https://en.wikipedia.org/wiki/Hybrid_genome_assembly
http://mhap.readthedocs.org/en/stable/quickstart.html#output
http://mhap.readthedocs.org/en/stable/quickstart.html#output
http://wgs-assembler.sourceforge.net/wiki/index.php/Overlaps
http://wgs-assembler.sourceforge.net/wiki/index.php/Overlaps
https://github.com/isovic/graphmap/blob/master/overlap.md
https://github.com/isovic/graphmap/blob/master/overlap.md
https://nanoporetech.com/applications/dna-nanopore-sequencing
https://nanoporetech.com/applications/dna-nanopore-sequencing
http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA_Dissection
http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA_Dissection
https://nanoporetech.com/science-technology/introduction-to-nanopore-sensing/solid-state-nanopores
https://nanoporetech.com/science-technology/introduction-to-nanopore-sensing/solid-state-nanopores
https://nanoporetech.com/science-technology/introduction-to-nanopore-sensing/solid-state-nanopores

Richard Cammack, Teresa Atwood, Peter Campbell, Howard Parish, An-

thony Smith, Frank Vella, i John Stirling. Needleman–wunsch align-

ment algorithm. URL //www.oxfordreference.com/10.1093/acref/

9780198529170.001.0001/acref-9780198529170-e-13384.

W. E. Castle. Mendel’s law of heredity. Science, 18(456):396–406, September 1903.

ISSN 1095-9203. URL http://science.sciencemag.org/content/

18/456/396.

Rattei Krumsiek, Arnold. Gepard: a rapid and sensitive tool for cre-

ating dotplots on genome scale. Bioinformatics, (23):1026–1028, 2007.

URL http://bioinformatics.oxfordjournals.org/content/23/

8/1026.full#ref-list-1.

Nicholas James Loman, Joshua Quick, i Jared T Simpson. A complete bacte-

rial genome assembled de novo using only nanopore sequencing data. bioRxiv,

2015. doi: 10.1101/015552. URL http://biorxiv.org/content/early/

2015/02/20/015552.

Mohammed-Amin Madoui, Stefan Engelen, Corinne Cruaud, Caroline Belser, Laurie

Bertrand, Adriana Alberti, Arnaud Lemainque, Patrick Wincker, i Jean-Marc Aury.

Genome assembly using nanopore-guided long and error-free dna reads. BMC Ge-

nomics, 16(1):1–11, 2015. ISSN 1471-2164. doi: 10.1186/s12864-015-1519-z.

URL http://dx.doi.org/10.1186/s12864-015-1519-z.

Jason R. Miller, Sergey Koren, i Granger Sutton. Assembly algorithms for next-

generation sequencing data. Genomics, 95(6):315–327, Jun 2010. ISSN 0888-7543.

doi: 10.1016/j.ygeno.2010.03.001. URL http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC2874646/. 20211242[pmid].

E. W. Myers. The fragment assembly string graph. Bioinformatics, (21):79–86, 2005.

URL http://bioinformatics.oxfordjournals.org/content/21/

suppl_2/ii79.abstract.

Gene Myers. A fast bit-vector algorithm for approximate string matching based on dy-

namic programming. J. ACM, 46(3):395–415, Svibanj 1999. ISSN 0004-5411. doi:

10.1145/316542.316550. URL http://doi.acm.org/10.1145/316542.

316550.

50

//www.oxfordreference.com/10.1093/acref/9780198529170.001.0001/acref-9780198529170-e-13384
//www.oxfordreference.com/10.1093/acref/9780198529170.001.0001/acref-9780198529170-e-13384
http://science.sciencemag.org/content/18/456/396
http://science.sciencemag.org/content/18/456/396
http://bioinformatics.oxfordjournals.org/content/23/8/1026.full#ref-list-1
http://bioinformatics.oxfordjournals.org/content/23/8/1026.full#ref-list-1
http://biorxiv.org/content/early/2015/02/20/015552
http://biorxiv.org/content/early/2015/02/20/015552
http://dx.doi.org/10.1186/s12864-015-1519-z
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874646/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874646/
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.abstract
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.abstract
http://doi.acm.org/10.1145/316542.316550
http://doi.acm.org/10.1145/316542.316550

Bruno Rahle. Simplification of the overlap graph. Magistarski rad, Fakultet elek-

trotehnike i računarstva, Sveučilište u Zagrebu, 2014. URL https://bib.irb.

hr/prikazi-rad?rad=773757.

J. T. Simpson i R. Durbin. Efficient construction of an assembly string

graph using the fm-index. Bioinformatics, 12(26):367–373, 2010. URL

http://bioinformatics.oxfordjournals.org/content/26/12/

i367.full#cited-by.

S. L. Salzberg T. J. Treangen. Repetitive dna and next-generation sequenc-

ing: computational challenges and solutions. Nature Reviews Genetics, (13/1):

36–46, November 2011. URL http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3324860/.

Robert Vaser. De novo transcriptome assembly. Magistarski rad, Fakultet elek-

trotehnike i računarstva, Sveučilište u Zagrebu, 2015. URL https://bib.irb.

hr/prikazi-rad?rad=773702.

51

https://bib.irb.hr/prikazi-rad?rad=773757
https://bib.irb.hr/prikazi-rad?rad=773757
http://bioinformatics.oxfordjournals.org/content/26/12/i367.full#cited-by
http://bioinformatics.oxfordjournals.org/content/26/12/i367.full#cited-by
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324860/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324860/
https://bib.irb.hr/prikazi-rad?rad=773702
https://bib.irb.hr/prikazi-rad?rad=773702

De novo sastavljanje genoma koristeći dugačka očitanja s velikom pogreškom

Sažetak

Sastavljanje genoma koristeći dugačka očitanja s velikom pogreškom (bez ispravl-

janja očitanja) je obećavajuća metoda. Diplomski rad pokazuje da se, ako se koriste

zajedno s jednostavnim metodama za uklanjanje šuma iz podataka, metode korištene

za sastavljanje genoma koristeći kratka očitanja mogu koristiti i za sastavljanje genoma

koristeći dugačka očitanja. Implementirane metode su testirane na dva skupa podataka

E. coli (jedan tvrtke PacBio i jedan tvrtke Oxford Nanopore Technologies). Rezultati

su uspored̄eni s rezultatima miniasm assemblera.

Ključne riječi: De novo sastavljanje genoma, PacBio, Oxford Nanopore technologies,

faza razmještaja.

De novo assembly using long error-prone reads

Abstract

Assembling genomes from long error-prone reads without error correction seems

like a promising method. The thesis shows that layout methods used for assembling

genomes from short reads can be utilized for assembling from long error-prone reads,

if coupled with new methods for eliminating the noise from a dataset. Methods are

validated with two datasets of Escherichia coli (PacBio and Oxford Nanopore Tech-

nologies). Results are compared with results of the miniasm assembler.

Keywords: De novo assembly, PacBio, Oxford Nanopore Technologies, layout.

	Introduction
	Preliminaries
	Oxford Nanopore
	Technology
	Disruptiveness

	Assembly
	Overlap-layout-consensus assembly
	Overlapper goal
	Overlap types

	Layout methods
	Converting overlaps to dovetail overlaps
	Input
	Output
	Algorithm
	Analysis

	Filtering contained reads
	Input
	Output
	Algorithm
	Analysis

	Tuning dovetail overlaps
	Input
	Output
	Algorithm
	Analysis

	Filtering transitive overlaps
	Input
	Output
	Analysis

	Filtering short overlaps
	Filtering erroneous overlaps
	Input
	Output
	Algorithm
	Analysis

	Graph creation
	Input
	Output
	Algorithm
	Analysis

	Graph simplification
	Trimming (tips)
	Input
	Output

	Bubble popping
	Input
	Output
	Algorithm
	Analysis

	Extracting unitigs
	Input
	Output
	Algorithm
	Analysis

	Extracting contigs
	Input
	Output
	Algorithm
	Analysis

	General layout algorithm

	Implementation
	Project history
	Used technologies
	Supported input and output formats
	Modules
	Stats
	Installation and running

	Testing and results
	Hardware and software
	Datasets
	Dot plot as a verification method
	MinION E. coli dataset - default parameters
	Pacbio E. coli dataset - default parameters
	Pacbio E. coli dataset - modified quality_threshold parameter
	Comparison with minasm

	Conclusion
	Bibliography

