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1. Introduction

"We have discovered the secret of life" were the first words said by Watson and Crick

on their entry at Eagle pub in Cambridge. Several hours before that, or rather, in the

morning of February 28th, 1955, they discovered something that would completely

change research in the field of human. They found structure, today known as deoxyri-

bonucleic acid (DNA).

DNA is a structure that carries genetic informations, transfer characteristics from

parents to their children. DNA is a part of all the living organisms, both the simplest

and the most complex. When we talk about DNA, it is important to stress that in our

body, besides our DNA, there are DNAs from all the other organisms that can be found

in our body. Therefore, if our body is infected with some kind of disease, a DNA of the

organism that causes that disease is present within the infected organism. Organisms

that cause diseases in our body are called pathogenic organisms. Besides the pathogens

there are also organisms that live in our body which do not cause any disease. In fact,

they generally represent normal and ecologically important inhabitants of the human

body.

The main goal of this thesis is to find an algorithm that could quickly and precisely

detect strange (pathogenic) organisms from a sample.

The thesis is organized as follow: Chapter 2 gives overview of this problem which

includes overview of the metagenomics and nanopore sequencing. Chapter 3 describes

methods and algorithms important for understanding the other part of this thesis. Chap-

ter 4 gives short overview of the implementation of this problem which includes im-

plementation of a core, and the implementation of a web application which is used for

the presentation of the results. Chapter 5 consists of the results of testing performed on

a set of several genomes. In the end, the Chapter 6 gives a brief conclusion and insight

into the future of this field of research.
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2. Overview

2.1. Definitions

First, we will see some important definitions that are necessary for easier understanding

of the main problem of this thesis.

A gene is a union of genomic sequences encoding a coherent set of potentially over-

lapping functional products [1].

A genome is an organism’s complete set of DNA, a chemical compound that con-

tains the genetic instructions needed to develop and direct the activities of every

organism.

Sequencing means determining the exact order of the base pairs in a segment of

DNA.

A GI number is series of digits that are assigned consecutively to each sequence

record processed by NCBI.

A TI number is series of digits that are assigned consecutively to each clade of

taxonomy tree.

Taxonomy is the science of naming, describing and classifying organisms and in-

cludes all plants, animals and microorganisms of the world. Taxonomy produces

a hierarchy of groups of organisms; the organisms are assigned to groups based

on similarities or dissimilarities of their characteristic. The classification sys-

tem begins with three domains that encompass all living and extinct forms of

life: archaea, bacteria and eukaryote. The main taxonomic ranks are: domain,

kingdom, phylum, class, order, family, genus, and species.

RefSeq - The reference sequence database provides a comprehensive, integrated,

non-redundant, well-annotated set of sequences, including genomic DNA, tran-

scripts and proteins.
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Assembly is a process through which short DNA sequence fragments are merged into

a longer DNA sequence.

2.2. Metagenomics

Metagenomics is defined as the direct genetic analysis of genomes contained within

an environmental sample. This field of study initially began with the cloning of envi-

ronmental DNA, followed by functional expressions screening, and was than quickly

complemented by direct random shotgun sequencing of environmental DNA.

Metagenomics proves access to the functional gene composition of microbial com-

munities and thus gives a much broader description than phylogenetic surveys, which

are often based only on the diversity of one gene. Metagenomics is also a powerful

tool for generation novel hypotheses of microbial function.

The rapid and substantial cost reduction in next-generation sequencing has dra-

matically accelerated the development of sequence-based metagenomics. In fact, the

number of metagenome shotgun sequence datasets has exploded in the past few years.

[2]

A metagenome can be subject to three general analytical strategies that ultimately

produce a profile of the taxa, phylogenetic lineages, or genomes present in the com-

munity as shown in figure 2.1.
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Figure 2.1: Analytical strategies to determine which taxa are presented in a metagenome [3]

Marker gene analysis is one of the most straightforward and computationally ef-

ficient ways of quantifying a metagenome’s taxonomic diversity. This procedure in-

volves comparing metagenomic reads to a database of taxonomically informative gene

families (i.e., marker genes), identifying those reads that are marker gene homologs,

and using sequence similarity to the marker gene database sequences to taxonomically

annotate each metagenomic homolog. Since this approach involves comparing metage-

nomic reads to a relatively small database for the purpose of similarity search, marker

gene analysis can be a relatively rapid way to estimate the diversity of metagenome [3].

This strategy is used in this work and will be discussed in more detail in the following

chapters.

2.3. Sequencing

The beginning of the sequencing can be found in the research of Frederick Sanger

who introduced fast sequencing methods [4]. The idea of sequencing the entire human

genome was first proposed in discussions at scientific meetings organized by the US

Department of Energy and others from 1984 to 1986 [5][6]. In 1990 the Department of

Energy and National Institute of Health launched new project called Human genome
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project with the goal of determining the human genome. The cost of the project was

about 3 billion dollars and was expected to take 15 years. It is considered a key moment

in the development of sequencing. The project was finished in April of 2013.

The results show that the human genome is constructed of 3 billion pairs of nu-

cleotide bases and the average gene is consisted of 3000 bases. The total number of

genes is about 20500; 99,99% bases are the same for all people.

Successful completion of the Human genome project created opportunity for ambi-

tious project in the field of genetic engineering, including the searching for connections

between the DNA sequence of some species and health, and an improved tracking of

reactions on medical treatments. As a reaction on that there is a project called The Can-

cer Genome Atlas with a goal to determine the mutations of DNA causing the cancer

in organs and tissues.

2.3.1. Nanopore sequencing

Nanopore sequencing has its origins in several laboratories during the 1980s [7]. In

1989, David Deamer jotted a seemingly implausible idea in his notebook, suggesting

that it might be possible to sequence a single strand of DNA being drawn through a

membrane’s nanoscopic pore by electrophoresis. The milestones in nanopore DNA

sequencing are shown on the figure 2.2.

Figure 2.2: Milestones in nanopore DNA sequencing [7].

Certain porous transmembrane cellular proteins act as nanopores. Nanopores can

also be made of silicon. Nanopore sequencing is based on theory when a nanopore is

immersed in a conducting fluid and a potential is applied across it, an electric current

is appeared. Nanopore sequencing technology identifies a nucleic acid sequence by

threading a molecule through a pore with a diameter of a few nanometers [8]. That
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pore might be a protein such as a-hemolysin that is embedded in a polymer membrane

or a hole formed in a solid material such as silicon nitride. Voltage is applied across the

membrane, creating an ionic current and an electrophoretic force that pulls the DNA

through the opening. As the molecule zips through, it causes telltale fluctuations in the

current that are specific to different DNA sequences. The technology can also be used

to analyze RNA and proteins.

Figure 2.3: Nanopore sequencing [9]

2.4. SAM format

The Sequence Alignment/Map (SAM) format is a generic alignment format for storing

reads alignments against reference sequences, supporting short and long reads pro-

duced by different sequencing platforms [10]. It is a TAB-delimited text format con-

sisting of header section, which is optional, and an alignment section. Header lines

start with ’@’ and if present, it must be prior to the alignments. Each alignment line

has 11 mandatory fields for flexible or aligner specific information. These are:

1. QNAME: The query name.

2. FLAG: Combination of bitwise FLAGs.

3. RNAME: Reference sequence name of the alignment. If @SQ header is present,

RNAME must be present in one of the header lines. An unmapped read has ’*’

at this field.

4. POS: 1-based leftmost mapping position of the first matching base.

5. MAPQ: Mapping quality. It equals −10 log10 Pr(mapping position is wrong),

rounded to the nearest integer. A value 255 indicates that the mapping quality is

not available.
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6. CIGAR: The cigar string of an alignment.

7. RNEXT: Reference name of the next read. This field is set to ’*’ when the infor-

mation is unavailable, and set as ’=’ if reference name of next read is identical

to the name of the current read.

8. PNEXT: Position of the next read.

9. TLEN: The observed length of the template.

10. SEQ: segment sequence.

11. QUAL: ASCII of base quality plus 33.
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3. Material and methods

Overview of methods and data used in this work is presented in this chapter, and serves

as a prerequisite for the understanding of the algorithms and problem-solving tech-

nique presented in Chapter 4.

3.1. Reducing database

Reduced database is used because it allows faster mapping and decrease the possibility

of false positive hits. There are several ways how is possible to reduce database; one

way can be to use specific k-mers as [11], and the other way can be to use specific

markers.

At the core of [11] is a database that contains records consisting of a k-mer and the

LCA of all organisms whose genomes contain that k-mer. Sequences are classified by

querying the database for each k-mer in a sequence, and then using the resulting set of

LCA taxa to determine an appropriate label for the sequence. Sequences that have no

k-mers in the database are left unclassified.

There are two general methods by which marker genes are used to taxonomically

annotate metagenomes. The first relies on sequence similarity between the read and

the marker genes (e.g. Metaphlan [12]). The second approach uses phylogenetic in-

formation, which may take longer to calculate, but may also provide greater accuracy

[3].

Metaphlan estimates the relative abundance of microbial cells by mapping reads

against a reduced set of clade-specific marker sequences that are computationally pre-

selected from coding sequences that unequivocally specific microbial clades at the

species or higher taxonomic levels and cover all main functional categories.

In this work specific markers are used instead of specific k-mers. The reason why I

used specific marker instead of specific k-mers is that the reads obtained by nanopore

technologies have high percentage of errors, leading to a low number of true positive

hits.
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In order to reduce the database I used the same set of the markers as Metaphlan

[12]. On the Metaphlan web page1 a file named markers_info.txt can be found, which

contains informations about clades specific markers. Each line in the file represents

one marker. Lines start with GI annotation of a gene followed by its position in a

genome. If a marker is on a reverse complement chain, its position starts with ’c’. It is

possible that sometimes there are more positions which refer to the coding sequences

without the introns. There are two fields required for reducing database in the second

column of line; these are called ’ext’ and ’clade’. A ’clade’ field contains a name of

the clade to which that marker belongs. Name starts with a letter indicates to which

taxonomy group marker belong. This letter and the name of the clade are separated by

"__" (e.g. s__Streptomyces_sp_KhCrAH_244). A letter can be one of the following:

a - all taxonomic levels;

k - kingdoms (Bacteria and Archea) only;

p - phyla only;

c - class only;

o - orders only;

f - family only;

g - genera only;

s - species only.

Field ’ext’ can be empty, in case it is not, it contains written annotation of strains that

also contain that marker but which are not under the given clade. Annotation of strains

are given according to their assembly accession number (e.g GCF_000024865).

3.2. Maximum likelihood estimation

3.2.1. Definition

Let us assume that we have set of independent, identically distributed samples drawn

from some known density function p(x|θ). In this thesis vectors is written as a bold

1https://bitbucket.org/biobakery/metaphlan2

9



character. This density is a mixture of probability distributions, governed by a set of

parameters θ :

x(i) ∼ p(x|θ).

Formally, there is a set D = {x(1), x(2), ..., x(N)} of observed data by assumption gen-

erated from p. According to that, we define the probability of observing the data under

the parameters θ as:

p(D|θ) = p(x(1), x(2), ..., x(N)|θ) =
N∏
i=1

p(x(i)|θ) ≡ L(θ|D)

With this, a probability density function of D governed by parameters θ is defined.

Likewise, this function can be observed as a function of θ governed by fixed parameter

D. In that case, this function is called likelihood function and is written as L(θ|D).
The goal is to estimate the parameter θ̂ML which maximizes the likelihood function

L(θ|D). Formally, we need to estimate θ̂ML, such that:

θ̂ML = argmax
θ

L(θ|D)

Instead of maximizing the likelihood function, it is more practical to maximize the

logarithm of the likelihood function. This function is called the log-likelihood function

and can be written as:

lnL(θ|D) = ln
N∏
i=1

p(x(i)|θ) =
N∑
i=1

ln p(x(i)|θ)

3.2.2. Simple example

Let us suppose that we toss a coin 10 times and observe 6 tails (T) and 4 heads (H). Let

us say that µ is a probability of the appearance of the head after one toss. Consequently,

we can write P (X = H|µ) = µ and P (X = T |µ) = 1 − µ. The likelihood function

for this case is

L(µ|D) = P (D|µ) = µ4(1− µ)6

10
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Figure 3.1: Likelihood function for 6 tails and 4 heads

From the figure 3.1 it can be seen that the likelihood function has maximum value

for µ = 0.4 and it is the estimated parameter by the maximum likelihood estimation

method.

3.3. Mixture model

A mixture model is one in which a set of component models is combined to produce a

richer model [13]:

p(x) =
K∑
k=1

πkp(x|θk)

Let us assume that we have N reads and G genomes. Every read can origin from

one or more genomes. Our task is to determine probability that i-th read origins from

j-th genome. We define the mixture components as p(x|θk) with the parameters θk.

Parameters πk are mixture coefficients and for it worth that
G∑
k=1

πk = 1. Now the

mixture density can be expressed as:

p(x) =
G∑
k=1

P (Gk)p(x|Gk),

where πk = P (Gk) is the prior distribution of chosen genome k and p(x|θk) = p(x|Gk)
is a density of x with choosing genome k. A Bayesian rule is used in order to calculate

the posterior distribution P (Gk|x):
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P (Gk|x) =
P (Gk)p(x|Gk)
G∑
j=1

P (Gj)p(x|Gj)
=

πkp(x|θk)
G∑
j=1

πjp(x|θj)
≡ hk

and it is a possibility that x originates from the k-th genome.

Our task is to determine the parameters of this model:

θ = {P (Gk),θk}Gk=1.

We can estimate these parameters with the maximum likelihood estimation. The

log-likelihood function for this case is:

lnL(θ|D) = ln
N∏
i=1

p(x(i)) = ln
N∏
i=1

G∑
k=1

πkp(x(i)|θk) =
N∑
i=1

ln
G∑
k=1

πkp(x(i)|θk).

Obviously the maximization of this is not possible to solve in closed form. In

order to solve this other methods are required. One of them, expectation maximization

algorithm, is described in the next section.

3.4. Expectation maximization algorithm

Expectation maximization algorithm (EM algorithm) is an iterative method for solving

the log-likelihood problem with the latent variables. A latent variable is variable whose

realization could not be observed directly, as illustrated in the following example.

Let us assume that we have two coins, A and B. The possibility that we toss a head

with the coin A is µA, and for B is µB. So, we have P (A) = µA and P (B) = µB.

These parameters are unknown so we need to estimate them.

If we know which coin is thrown we can simply estimate it using the maximum

likelihood method described in 3.2. The problem of estimating µA and µB becomes

more complex if we do not know which coin is thrown in which round. We only know

the results of each toss. To solve this problem we do not use the maximum likelihood

method. In order to solve this we need to use the EM algorithm.

3.4.1. Definition

The goal of this algorithm is to find parameters θ which maximize the log-likelihood

function lnL(θ|X). Model p(X|θ) is expanded with a set of latent variables Z and
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a joint density p(X,Z|θ) is used. Marginal distribution p(X|θ) can always be recon-

structed as:

p(X|θ) =
∑
Z

p(X,Z|θ)

The set {X,Z} is called complete, whereas X is incomplete. According to that,

lnL(θ|X,Z) is complete log-likelihood, and lnL(θ|X) is incomplete log-likelihood.

Incomplete log-likelihood can be defined as:

lnL(θ|X) = ln p(X|θ) = ln
∑

Z

p(X,Z|θ)

whereas complete log-likelihood is:

lnL(θ|X,Z) = ln p(X,Z|θ).

The main difference between the complete and incomplete log-likelihood is that the

incomplete could be solved in closed form, whereas the complete cannot. We do not

know set Z, it is the missing data. Therefore, it is not possible to work with the com-

plete log-likelihood directly. Instead of directly observing the complete log-likelihood,

the expectation of complete log-likelihood is tackled, E[lnL(θ|X,Z)], what principally

is the goal.

Maximization of expectation is achieved by alternation between two steps of EM

algorithm: E-step and M-step. At an E-step (expectation step) we calculate the ex-

pectation of the complete log-likelihood with fixed parameters θ(t). It can be written

as:

Q(θ|θ(t)) = EZ|D,θ(t) [ln L(θ|D,Z)]

= EZ|D,θ(t) [ln L(D,Z|θ)]

=
∑
Z

P (Z|X,θ(t))ln p(X,Z|θ)
(3.1)

In a M-step (maximization step) new parameters θ(t+1) which maximize 3.1 need

to be chosen:

θ(t+1) = argmax
θ

Q(θ|θ(t))

This is make problem easier compared to the problem from the beginning of this

section. In most cases it can be solved in the closed form. Below is a pseudocode of

general EM algorithm.
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Algorithm 1: General EM algorithm
Data: initialize parameters θ0

t← 0;

while not convergency of ln L(θ|D) or parameters do
E-step: calculate P (Z|X,θt)
M-step: θ(t+1) ← argmax

θ
Q(θ|θ(t))

where Q(θ|θ(t)) =
∑

Z P (Z|X,θ
(t))ln p(X,Z|θ)

t← t+ 1

3.5. Method

Previously we gave simple introduction to maximum likelihood estimation and EM

algorithm what is necessary for better understanding this method, especially the sec-

ond step where classifier is used to determine which species is present in a sample.

There are two steps in our method. First we need to map metagenomic sample against

reduced database and after that determine which species are present in a sample.

3.5.1. Mapping against a reduced database

In the first step we map metagenomic reads against a reduced database of clade-specific

marker sequences. Clades are groups of genomes (organisms) that can be as specific

as species or as broad as phyla. Clade-specific markers are coding sequences (CDS)

that satisfy the conditions of being strongly conserved within the clade’s genomes and

not possessing substantial local similarity with any sequence outside the clade. This

can be done very efficiently, as the reduced database contains only ~4% of sequenced

microbial genes, and each read of interest has at most one match due to the markers’

uniqueness [12]. Despite of that we can not uniquely map reads to the specific species

because some marker could belong to the several species.

3.5.2. Determining which species are present in a sample

At this step we have output file with mapped reads. Each of R reads could be either

mapped to one of the markers or be unmapped. The task is to determine which read

originates from which species and to accordingly conclude which species are present

in a sample. To solve this problem we use previously described mixture model which

definition is given in the next paragraph.We define our model at a level of genomes
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because in the second substep of this step we try to determine which genome is present

in a sample, but there is not difference on which level of taxonomy tree we are.

We assume that reads are drawn from a small subset of unknown size from the

pathogen genomes in the database. It assumes that each read is drawn from only one

of the genomes in the subset. Parameters in the model represent the proportions of

reads that originate from each genome as well as the proportion of the non-unique

reads that are incorrectly assigned to each genome due to sequence similarity [14].

Let us say that we have vector z = (z1, ..., zG) where a zk = 1 if a read originates

from k-th genome, otherwise zk = 0. Note that by assumption, one and only one

element of the vector z can be equal to 1. We assume that that z follows a multinomial

distribution, with probability of success:

P (zk = 1) = πk.

Also, we know that
∑

k zk = 1 and according to that we can write:

P (z) =
G∏
k=1

πzkk .

For the unique reads, we know the template genome of interest or, in other words,

we directly observe the genome indicator z. In the case of the non-unique reads, the

genome indicator z is the missing data. For the non-unique reads, the observations are

partial mapping qualities for each of the genomes. These mapping probabilities are

provided as posterior probabilities, which are scaled mapping qualities or relative like-

lihood alignment scores obtained from the algorithm. More specifically, for the i-th

read we denote these mapping scores by q(i) = (q
(i)
1 , ...q

(i)
G ). For the non-unique reads,

these represent the uncertainty in mapping and need to be rescaled, or equivalently

these reads need to be reassigned to the correct template genome of origin. In order

to do this, we define a second set of parameters, δ = (δ1, ..., δG) where δj is reassign-

ment parameter that represents the proportions of the non-unique reads that need to be

reassigned to the j-th genome. We can write our likelihood function p(x|z,θ):

p(x(i)|z,θ) =
G∏
k=1

p(x(i)|θk)zk =
G∏
k=1

(δ1−y
(i)

k q
(i)
k )zk

where we defined our parameters θ as δ1−y
(i)

k q
(i)
k where y(i) is the indicator variable for

unique reads. If y(i) = 1 it means that the read i is unique and we do not need to use

reassignment parameter δ for that read.
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Joint distribution can be written using two previous formula:

p(x(i), z|θ) = P (z)p(x(i)|z,θ) =
G∏
k=1

πzkk

G∏
k=1

p(x(i)|θk)zk =
G∏
k=1

πzkk (δ1−y
(i)

k q
(i)
k )zk

Now, knowing the joint distribution p(x, z|θ) and P (z) we can write complete log-

likelihood function as:

ln L(θ|D,Z)) = ln
R∏
i=1

p(x(i), z(i)|θk)

= ln
R∏
i=1

G∏
k=1

π
z
(i)
k
k p(x|θk)z

(i)
k

=
R∑
i=1

G∑
k=1

z
(i)
k (ln πk + ln p(x(i)|θk))

We assume a priori that both π and θ follow a Dirichlet distributions, the densities

of which can been written as:

p(π|a) ∼
G∏
j=1

π
aj−1
j

p(θ|b) ∼
G∏
j=1

θ
bj−1
j

If aj = 1 for all genomes, this is equivalent to adding one unique read for each

of the G genomes, and aj = n would be equivalent of adding n unique reads to the

j-th genome. Similarly, bj = n is equivalent of adding n non-unique reads to the j-th

genome.

In the previous section is given overview of an EM algorithm so now I will give

only pseudocode of our method which includes closed form of each step.
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Algorithm 2: EM algorithm for our method
Data: initialize parameters {πj, qj, δj}Gj=1

while not convergency of ln L(θ|D) or parameters do
E-step:

Calculate h(i)j using temporary value of parameters for each read

x(i) ∈ D and each genome j = 1, ..., G :

h
(i)
j =

πjδ
1−yi
j q

(i)
j

G∑
k=1

πδ
1−yi
j q

(i)
j

M-step:
Calculate new values for parameters using temporary values of hj . For

each genome j = 1, ..., G:

πj =

R∑
i=1

h
(i)
j +aj

N+
G∑

j=1
ak

δj =

R∑
i=1

(1−y(i))h(i)j +bj

R∑
i=1

(1−y(i))+
G∑

j=1
bj

Calculate temporary value of log-likelihood function:

ln L(θ|D) =
R∑
i=1

ln
G∑
j=1

πjp(x
(i)|θj)

Final score is πj and in the first substep it represents the proportion of reads that

are mapped to the species j. We know that each mapped read is not uniquely mapped

to one species, it is uniquely mapped to one marker but that marker could belong to

the more species and πj will be distributed over these species so it could not achieve a

high value. To solve this problem, in the second substep we map a metagenomic reads

against a database that contains genomes of the first 5 species according to the value

of πj in the first substep. After the mapping, the classifier determines which genome

is present in a sample and final πj represents the proportion of reads that are mapped

to the genome.

17



4. Implementation

This application can be divided into two parts. First part is the core of this applica-

tion and it is written in Python. Second part is web application which starts real-time

analysis and presents results during mapping. Web application is written in Java using

Play Framework. In the next two sections are overview of each of this parts.

4.1. Core

Implementation of the application consists of four modules. All of these are imple-

mented in python. First, reduced database need to be prepared. The task is, using the

specific markers annotation, to construct the database that contains only marker genes

in order to speed-up the mapping and reduce the possibility of false positive hits. As

mentioned in the Chapter 3, the markers from Metaphlan were used in this work. This

file contains only GI and position of specific gene used as marker. Therefore, the first

task is to pair each GI from the marker file with a nucleotide sequence. Afterwards,

the task is to find the taxonomy number of a specific clade. This algorithm works on

the level of species so if some marker is determined for a clade above the species it

is necessary to set that marker on the species below that clade first, and vice verse if

that marker is unique for some strain. In order to get the taxonomy number and taxon-

omy subtree from the name of a clade I used names.dmp and nodes.dmp downloaded

from the NCBI ftp server. The same clade could have many corresponding taxonomy

numbers depending on the type of name (scientific name, equivalent name...). In this

module, I used only the scientific name in order to get the taxonomy number. Names

of the clades in the text file markers_info.txt are given replacing all the non alphanu-

meric characters with ’_’. Similarly, we need to do the same thing with the names

from names.dmp. Some markers can belong to other strains that are not under given

the clade. Therefore, we also need to find the taxonomy number of the species above

those strains.
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Figure 4.1: Preparing reduced database

Second module is used for mapping the sequenced reads against reduced database.

This tool is adapted for real-time analysis of reads obtained by sequencer so this mod-

ule reacts on every new set of reads and map it against the reduced database. Graphmap

was used for mapping [15]. However, it is not mandatory; it is possible to use every

tool that gives output in SAM format.

Next module is the core of the whole system. In this module I implemented an

algorithm which reads the output from the previous module and detect species in the

sample. Model used in this algorithm is described in Chapter 3, and the code is organ-

ised in a such a way that makes it easy to change the model of the algorithm.

Last module is used to produce the final output. This module gets results from

previous module and gives them in appropriate format. These results are read by web

application and presented to user.
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Figure 4.2: Workflow of the algorithm
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4.2. Web application

Web application is written in Java using Play Framework and it follows the Model-

view-controller (MVC) architectural pattern applied to the Web architecture.

Figure 4.3: Web page organisations

The main function of the web is to upload the reads and to present the results. After

the reads are uploaded the mapping process begin. As long as this process is active,

the results are refreshed every minute. Home page of the web application on which are

shown all started tasks is shown on the figure 4.4.
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Figure 4.4: Home page of the web application

There is also a page which shows results from real-time analysis. It contains one

graph on which are shown first 10 results from algorithm.

Figure 4.5: Graph on the web page for results
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5. Results

Our method was tested on a sets of synthetic bacteria samples produced using PacBio

reads simulator (PBSIM) [16]. PacBio sequencing is a method for real-time sequenc-

ing and does not require a pause between step. PacBio sequencing offers much longer

read lengths and faster runs than SGS methods but is hindered by a lower throughput,

higher error rate, and higher cost per base [17]. PBSIM produces a set of simulated

reads in the FASTQ format and a list of alignments between a reference sequence and

simulated reads in the MAF format. The parameters with which this tool was ran is

given in the table 5.1.

option value
data-type CLR

depth one of {1,5,10,15}

length-mean 9753

length-sd 4260

length-min 5

length-max 100000

accuracy-mean 0.9

accuracy-sd 0.05

accuracy-min 0.7

difference-ratio 50:30:20

Table 5.1: Pbsim parameters
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The following table shows the strains that are used in testing.

GI TI species TI Name
49240382 282458 1280 Staphylococcus aureus

374352002 1132507 28901 Salmonella enterica

1001954050 1263871 573 Klebsiella pneumoniae

Table 5.2: Strains used for testing

Each strain was tested with the different coverage against the marker database. We

choose the coverage from the set of {x1, x5, x10} when we having the reads of one

bacteria, and from the set of {x5, x10, x15} when having made the mixture of these

bacteria. The following tables show the top 5 results with the different coverage for

each of these bacteria. For each set we have two tables. In the first are the results after

the first substep, and in the second table are the results after the mapping reads to the

genomes. In the first column of a table is taxonomy number of the result, in the second

is the name of the species or the strain, and in the third column is the proportion of

reads that are mapped to that result. The goal of this testing is to find the strain from

which the synthetic set was created with the high value of the final score.
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Salmonella enterica

The test was performed on the synthetic sets created from the strain

Salmonella enterica subsp. enterica serovar Typhi str. P-stx-12 with the goal of

getting this strain as the result after the second substep.

TI Name Final score
28901 Salmonella enterica 0.25

947561 Yersinia enterocolitica IP2222 0.002

914128 Serratia symbiotica str. Tucson 0.002

469595 Citrobacter sp. 30_2 0.002

1328380 Klebsiella pneumoniae MGH 48 0.002

Table 5.3: Salmonella enterica coverrage x1, results obtained after the first substep

TI Name Final score
1132507 Salmonella enterica subsp. enterica serovar

Typhi str. P-stx-12

0.786

527001 Salmonella enterica subsp. enterica serovar

Typhi str. Ty21a

0.012

209261 Salmonella enterica subsp. enterica serovar

Typhi str. Ty2

0.012

220341 Salmonella enterica subsp. enterica serovar

Typhi str. CT18

0.011

1320309 Salmonella enterica subsp. enterica serovar

Bovismorbificans str. 3114

0.010

Table 5.4: Salmonella enterica coverrage x1, results obtained after the second substep

TI Name Final score
28901 Salmonella enterica 0.5

947561 Yersinia enterocolitica IP2222 0.002

914128 Serratia symbiotica str. Tucson 0.001

469595 Citrobacter sp. 30_2 0.001

1328380 Klebsiella pneumoniae MGH 48 0.001

Table 5.5: Salmonella enterica coverrage x5, results obtained after the first substep
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TI Name Final score
1132507 Salmonella enterica subsp. enterica serovar

Typhi str. P-stx-12

0.89

209261 Salmonella enterica subsp. enterica serovar

Typhi str. Ty2

0.01

527001 Salmonella enterica subsp. enterica serovar

Typhi str. Ty21a

0.008

220341 Salmonella enterica subsp. enterica serovar

Typhi str. CT18

0.005

439843 Salmonella enterica subsp. enterica serovar

Schwarzengrund str. CVM19633

0.002

Table 5.6: Salmonella enterica coverrage x5, results obtained after the second substep

TI Name Final score
28901 Salmonella enterica 0.17

947561 Yersinia enterocolitica IP2222 0.0002

914128 Serratia symbiotica str. Tucson 0.0001

469595 Citrobacter sp. 30_2 0.0001

1328380 Klebsiella pneumoniae MGH 48 0.0001

Table 5.7: Salmonella enterica coverrage x10, results obtained after the first substep

TI Name Final score
1132507 Salmonella enterica subsp. enterica serovar

Typhi str. P-stx-12

0.89

220341 Salmonella enterica subsp. enterica serovar

Typhi str. CT18

0.015

209261 Salmonella enterica subsp. enterica serovar

Typhi str. Ty2

0.009

527001 Salmonella enterica subsp. enterica serovar

Typhi str. Ty21a

0.009

295319 SSalmonella enterica subsp. enterica serovar

Paratyphi A str. ATCC 9150

0.002

Table 5.8: Salmonella enterica coverrage x10, results obtained after the second substep
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Staphylococcus aureus

The test was performed on the synthetic sets created from the strain

Staphylococcus aureus subsp. aureus MRSA252 with the goal of getting this

strain as the result after the second substep.

TI Name Final score
1280 Staphylococcus aureus 0.16

2130 Ureaplasma urealyticum 0.03

5808 Cryptosporidium muris 0.005

29555 Mycoplasma canis 0.005

5833 Plasmodium falciparum 0.004

Table 5.9: Staphylococcus aureus coverage x1, results obtained after the first substep

TI Name Final score
282458 Staphylococcus aureus subsp. aureus

MRSA252

0.74

46170 Staphylococcus aureus subsp. aureus 0.01

548473 Staphylococcus aureus subsp. aureus TCH60 0.01

585143 Staphylococcus aureus subsp. aureus

55/2053

0.01

703339 Staphylococcus aureus 04-02981 0.01

Table 5.10: Staphylococcus aureus coverage x1, results obtained after the second step

TI Name Final score
1280 Staphylococcus aureus 0.05

2130 Ureaplasma urealyticum 0.003

29555 Mycoplasma canis 0.0009

1345695 Clostridium saccharobutylicum DSM 13864 0.0009

748449 Halobacteroides halobius DSM 5150 0.0009

Table 5.11: Staphylococcus aureus coverage x1, results obtained after the first substep
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TI Name Final score
282458 Staphylococcus aureus subsp. aureus

MRSA252

0.89

46170 Staphylococcus aureus subsp. aureus 0.014

548473 Staphylococcus aureus subsp. aureus TCH60 0.004

585143 Staphylococcus aureus subsp. aureus

55/2053

0.004

703339 Staphylococcus aureus 04-02981 0.01

Table 5.12: Staphylococcus aureus coverage x1, results obtained after the second step

TI Name Final score
1280 Staphylococcus aureus 0.05

2130 Ureaplasma urealyticum 0.003

868864 Desulfurobacterium thermolithotrophum

DSM 11699

0.001

1341181 Flavobacterium limnosediminis JC2902 0.001

5808 Cryptosporidium muris 0.001

Table 5.13: Staphylococcus aureus coverage x10, results obtained after the first substep

TI Name Final score
282458 Staphylococcus aureus subsp. aureus

MRSA252

0.89

46170 Staphylococcus aureus subsp. aureus 0.014

585143 Staphylococcus aureus subsp. aureus

55/2053

0.004

548473 Staphylococcus aureus subsp. aureus TCH60 0.004

703339 Staphylococcus aureus 04-02981 0.01

Table 5.14: Staphylococcus aureus coverage x10, results obtained after the second step
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Klebsiella pneumoniae

The test was performed on the synthetic sets created from the strain

Klebsiella pneumoniae ATCC BAA-2146 with the goal of getting this strain as

the result after the second substep.

TI Name Final score
573 Klebsiella pneumoniae 0.0064

665944 Klebsiella sp. 4_1_44FAA 0.0057

749535 Klebsiella sp. MS 92-3 0.0057

1269006 Klebsiella pneumoniae 909957 0.0057

1182695 Klebsiella sp. KTE92 0.0054

Table 5.15: Klebsiella pneumoniae coverage x1, results obtained after the first substep

TI Name Final score
1263871 Klebsiella pneumoniae ATCC BAA-2146 0.75

1380908 Klebsiella pneumoniae JM45 0.02

72407 Klebsiella pneumoniae subsp. pneumoniae 0.016

484021 Klebsiella pneumoniae subsp. pneumoniae

NTUH-K2044

0.016

1244085 Klebsiella pneumoniae CG43 0.016

Table 5.16: Klebsiella pneumoniae coverage x1, results obtained after the second step

TI Name Final score
573 Klebsiella pneumoniae 0.17

460086 Kribbella catacumbae 0.0006

1157680 Caulobacter sp. JGI 0001013-D04 0.00046

636 Edwardsiella tarda 0.0004

1182695 Klebsiella sp. KTE92 0.0004

Table 5.17: Klebsiella pneumoniae coverage x5, results obtained after the first substep
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TI Name Final score
1263871 Klebsiella pneumoniae ATCC BAA-2146 0.92

484021 Klebsiella pneumoniae subsp. pneumoniae

NTUH-K2044

0.008

72407 Klebsiella pneumoniae subsp. pneumoniae 0.007

1380908 Klebsiella pneumoniae JM45 0.007

1244085 Klebsiella pneumoniae CG43 0.005

Table 5.18: Klebsiella pneumoniae coverage x5, results obtained after the second step

TI Name Final score
573 Klebsiella pneumoniae 0.10

5808 Cryptosporidium muris 0.00019

749535 Klebsiella sp. MS 92-3 0.00018

936565 Klebsiella sp. OBRC7 0.00015

1206777 Pseudomonas sp. Lz4W 00013

Table 5.19: Klebsiella pneumoniae coverage x10, results obtained after the first substep

TI Name Final score
1263871 Klebsiella pneumoniae ATCC BAA-2146 0.94

1380908 Klebsiella pneumoniae JM45 0.0098

72407 Klebsiella pneumoniae subsp. pneumoniae 0.00567

1328324 Klebsiella pneumoniae subsp. pneumoniae

KPNIH27

0.0039

1123862 Klebsiella pneumoniae subsp. pneumoniae

Kp13

0.0031

Table 5.20: Klebsiella pneumoniae coverage x10, results obtained after the second step
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Mixture of previos three datasets

The test was performed on the synthetic sets created of previously defined sets.

Mixed set is combination of: Salmonella enterica with the coverage x15, Staphy-

lococcus aureus with the coverage x10 and Klebsiella pneumoniae with the cov-

erage x5. The goal is to find Salmonella enterica as the first result, Staphylococ-

cus aureus as the second result and Klebsiella pneumoniae as the third result.

TI Name Final score
28901 Salmonella enterica 0.13

1280 Staphylococcus aureus 0.02

573 Klebsiella pneumoniae 0.009

749535 Klebsiella sp. MS 92-3 0.005

665944 Klebsiella sp. 4_1_44FAA 0.004

Table 5.21: Mixture of Salmonella enterica, Staphylococcus aureus, Klebsiella pneumoniae

with the coverage x15, x10, x5 respectively; results obtained after the first step

TI Name Final score
1132507 Salmonella enterica subsp. enterica serovar

Typhi str. P-stx-12

0.64

282458 Staphylococcus aureus subsp. aureus

MRSA252

0.15

1263871 Klebsiella pneumoniae ATCC BAA-2146 0.064

220341 Salmonella enterica subsp. enterica serovar

Typhi str. CT18

0.008

527001 Salmonella enterica subsp. enterica serovar

Typhi str. Ty21a

0.005

Table 5.22: Mixture of Salmonella enterica, Staphylococcus aureus, Klebsiella pneumoniae

with the coverage x15, x10, x5 respectively; results obtained after the second step

The previous tables show that our method is very precise and can precisely detect

species presented in a metagenomic sample with the different coverage.

To compare our method with Pathoscope[18] we used Salmonella enterica set with

the coverage x1 which require high precision because the coverage is small and the

genome is not long. Table 5.23 shows memory consumption and running time of the

our method and Pathoscope.
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Pathoscope Our tool
RAM 400 GB 18 GB

Time 6324 s 485 s

Table 5.23: Comparison of our method and Pathoscope, memory consumption and running

time

It is obvious that our method is roughly 13 times faster than Pathoscope and re-

quired 22 times less memory than Pathoscope.

The tables 5.24 and 5.25 show the final results obtained by Pathoscope and our

method.

TI Name Final score
209261 Salmonella enterica subsp. enterica serovar

Typhi str. Ty2

0.77

1132507 Salmonella enterica subsp. enterica serovar

Typhi str. P-stx-12

0.05

1003191 Salmonella enterica subsp. enterica serovar

Tennessee str. TXSC_TXSC08-19

0.005

1320309 Salmonella enterica subsp. enterica serovar

Bovismorbificans str. 3114

0.005

984211 Salmonella enterica subsp. enterica serovar

Anatum str. ATCC BAA-1592

0.005

Table 5.24: Results obtained by Pathoscope for Salmonella enterica x1 set
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TI Name Final score
1132507 Salmonella enterica subsp. enterica serovar

Typhi str. P-stx-12

0.786

527001 Salmonella enterica subsp. enterica serovar

Typhi str. Ty21a

0.012

209261 Salmonella enterica subsp. enterica serovar

Typhi str. Ty2

0.012

220341 Salmonella enterica subsp. enterica serovar

Typhi str. CT18

0.011

1320309 Salmonella enterica subsp. enterica serovar

Bovismorbificans str. 3114

0.010

Table 5.25: Results obtained by our method for Salmonella enterica x1 set

Comparison of the results from the tables 5.24 and 5.25 show that our method is

more precise than Pathosope. The strain from which synthetic set was created is not

given as the first result by Pathoscope, whereas our methoud gives it with the high

value of the final score. The reason for that we can find in the fact that we avoid false

positive hits using the reduced database in the first step, and mapping against genomes

under given clades in the second substep.
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6. Conclusion

Fast and cheap metagenomic sample analysis could be very useful for medical diagno-

sis. Traditional laboratory methods are either long-lasting or oriented towards a single

pathogen species.

In this thesis we developed a tool for metagenomic sample analysis which use

MinION sequencing devices by Oxford Nanopore Technologies (ONT). Since the

databases of bacteria genomes could be very large so we decided to reduce database

in order to make this method faster and resistant to false positive hits. Using markers

from Metaphlan we reduced huge database to the more acceptable one with the size of

1 GB.

We showed that it is possible to build functional and precise tool for the metagenome

analysis that could do real-time analysis. Presently,a mixture of bacteria with the hu-

man genome causes a lot of problem with the humans reads that are mapped to some

bacteria markers. We need to find compromise between speed of real-time analysis

and detection of human genome. In the future we can try with our own marker dataset

instead of dataset from Metaphlan.

34



BIBLIOGRAPHY

[1] Mark B Gerstein, Can Bruce, Joel S Rozowsky, Deyou Zheng, Jiang Du,

Jan O Korbel, Olof Emanuelsson, Zhengdong D Zhang, Sherman Weissman, and

Michael Snyder. What is a gene, post-encode? history and updated definition.

Genome research, 17(6):669–681, 2007.

[2] Torsten Thomas, Jack Gilbert, and Folker Meyer. Metagenomics-a guide from

sampling to data analysis. Microbial informatics and experimentation, 2(1):1,

2012.

[3] Thomas J Sharpton. An introduction to the analysis of shotgun metagenomic

data. 2014.

[4] Fred Sanger and Alan R Coulson. A rapid method for determining sequences

in dna by primed synthesis with dna polymerase. Journal of molecular biology,

94(3):441–448, 1975.

[5] Joseph Palca. Human genome: Department of energy on the map. Nature,

321:371, 1986.

[6] Robert L Sinsheimer. The santa cruz workshop—may 1985. Genomics,

5(4):954–956, 1989.

[7] David Deamer, Mark Akeson, and Daniel Branton. Three decades of nanopore

sequencing. Nature Biotechnology, 34(5):518–524, 2016.

[8] Vivien Marx. Nanopores: a sequencer in your backpack. Nature methods,

12(11):1015–1018, 2015.

[9] Tamas Szalay and Jene A Golovchenko. De novo sequencing and variant calling

with nanopores using poreseq. Nature biotechnology, 33(10):1087–1091, 2015.

35



[10] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,

Gabor Marth, Goncalo Abecasis, Richard Durbin, et al. The sequence alignmen-

t/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009.

[11] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol, 15(3):R46, 2014.

[12] Nicola Segata, Levi Waldron, Annalisa Ballarini, Vagheesh Narasimhan, Olivier

Jousson, and Curtis Huttenhower. Metagenomic microbial community profiling

using unique clade-specific marker genes. Nature methods, 9(8):811–814, 2012.

[13] David Barber. Bayesian reasoning and machine learning. Cambridge University

Press, 2012.

[14] Owen E Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong,

Nathan L Clement, Eduardo Castro-Nallar, Quinn Snell, G Bruce Schaalje,

Mark J Clement, Keith A Crandall, et al. Pathoscope: species identification

and strain attribution with unassembled sequencing data. Genome research,

23(10):1721–1729, 2013.

[15] Ivan Sovic, Mile Sikic, Andreas Wilm, Shannon Nicole Fenlon, Swaine Chen,

and Niranjan Nagarajan. Fast and sensitive mapping of error-prone nanopore

sequencing reads with graphmap. bioRxiv, page 020719, 2015.

[16] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. Pbsim: Pacbio reads simu-

lator—toward accurate genome assembly. Bioinformatics, 29(1):119–121, 2013.

[17] Anthony Rhoads and Kin Fai Au. Pacbio sequencing and its applications. Ge-

nomics, proteomics & bioinformatics, 13(5):278–289, 2015.

[18] Changjin Hong, Solaiappan Manimaran, Ying Shen, Joseph F Perez-Rogers,

Allyson L Byrd, Eduardo Castro-Nallar, Keith A Crandall, and William Evan

Johnson. Pathoscope 2.0: a complete computational framework for strain iden-

tification in environmental or clinical sequencing samples. Microbiome, 2(1):1,

2014.

[19] J Handelsman, J Tiedje, L Alvarez-Cohen, M Ashburner, IKO Cann, EF Delong,

WF Doolittle, CM Fraser-Liggett, A Godzik, JI Gordon, et al. The new science

of metagenomics: revealing the secrets of our microbial planet. Nat Res Council

Report, 13, 2007.

36



[20] Qichao Tu, Zhili He, and Jizhong Zhou. Strain/species identification

in metagenomes using genome-specific markers. Nucleic acids research,

42(8):e67–e67, 2014.

[21] Andy Kilianski, Jamie L Haas, Elizabeth J Corriveau, Alvin T Liem, Kristen L

Willis, Dana R Kadavy, C Nicole Rosenzweig, and Samuel S Minot. Bacterial

and viral identification and differentiation by amplicon sequencing on the minion

nanopore sequencer. Gigascience, 4(12):10–1186, 2015.

[22] Sissel Juul, Fernando Izquierdo, Adam Hurst, Xiaoguang Dai, Amber Wright,

Eugene Kulesha, Roger Pettett, and Daniel J Turner. What’s in my pot? real-time

species identification on the minion. bioRxiv, page 030742, 2015.

[23] Benjamin Buchfink, Daniel H Huson, and Chao Xie. Metascope-fast and accu-

rate identification of microbes in metagenomic sequencing data. arXiv preprint

arXiv:1511.08753, 2015.

[24] Alexander L Greninger, Samia N Naccache, Scot Federman, Guixia Yu, Placide

Mbala, Vanessa Bres, Doug Stryke, Jerome Bouquet, Sneha Somasekar, Jef-

frey M Linnen, et al. Rapid metagenomic identification of viral pathogens in

clinical samples by real-time nanopore sequencing analysis. Genome medicine,

7(1):1–13, 2015.

[25] Philip M Ashton, Satheesh Nair, Tim Dallman, Salvatore Rubino, Wolfgang Rab-

sch, Solomon Mwaigwisya, John Wain, and Justin O’Grady. Minion nanopore

sequencing identifies the position and structure of a bacterial antibiotic resistance

island. Nature biotechnology, 33(3):296–300, 2015.

[26] Robert C Edgar. Search and clustering orders of magnitude faster than blast.

Bioinformatics, 26(19):2460–2461, 2010.

[27] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian

data analysis, volume 2. Taylor & Francis, 2014.

[28] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statisti-

cal learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[29] Jo Handelsman. Metagenomics: application of genomics to uncultured microor-

ganisms. Microbiology and molecular biology reviews, 68(4):669–685, 2004.

37



[30] Ruth R Miller, Vincent Montoya, Jennifer L Gardy, David M Patrick, and Patrick

Tang. Metagenomics for pathogen detection in public health. Genome Med,

5(9):81, 2013.

[31] Sofia Morfopoulou and Vincent Plagnol. Bayesian mixture analysis for metage-

nomic community profiling. Bioinformatics, 31(18):2930–2938, 2015.

[32] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C

Zody, Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William

FitzHugh, et al. Initial sequencing and analysis of the human genome. Nature,

409(6822):860–921, 2001.

[33] Timothy J Denison, Alexis Sauer-Budge, Jene A Golovchenko, Amit Meller, Eric

Brandin, and Daniel Branton. Characterization of individual polymer molecules

based on monomer-interface interactions, June 2 2015. US Patent 9,046,483.

[34] John J Kasianowicz, Eric Brandin, Daniel Branton, and David W Deamer. Char-

acterization of individual polynucleotide molecules using a membrane channel.

Proceedings of the National Academy of Sciences, 93(24):13770–13773, 1996.

[35] Andy Petrella. Learning Play! Framework 2. Packt Publishing, 2013.

[36] Jan Šnajder. Machine learning. 2014.

[37] Franck Picard. An introduction to mixture models. Statistics for Systems Biology,

Research Report, (7), 2007.

38



Real-Time Analysis of a Metagenomic Sample Obtained by Nanopore Based
Sequencing Technology

Sažetak

Brza i jeftina analiza metagenomoskog uzorka može biti korisna za dijagnostiku

bolesti, kontrolu kvalitete hrane i utvrd̄ivanje štetnih nametnika na biljkama. Tradi-

cionalne laboratorijske metode su ili dugotrajne ili namijenjene za samo jednu vrstu.

Ured̄aji za sekvenciranje MinION tvrtke Oxford Nanopore Technologies relativno su

jeftini i pogodni za rad na terenu jer su lako prenosivi. Napravljen je alat koji u prvom

koraku pronalazi sve organizme čije sekvence u svom dijelu imaju veliku sličnost s

očitanim uzorcima, a nakon toga se utvrd̄uje koji organizmi su stvarno prisutni u tom

uzorku.

Ključne riječi: metagenomika, dijagnostika, liječenje

Tool for fast searching of protein sequences in databases

Abstract

Fast and cheap metagenomic sample analysis could be very useful for medical

diagnosis, food quality control and discovering harmful parasites on plants. Tradi-

tional laboratory methods are either long-lasting or oriented towards a single pathogen

species. MinION sequencing devices by Oxford Nanopore Technologies are relatively

cheap and suitable for application in the field. We developed a tool which in the first

step discovers all organisms whose sequence have high similarity to the reads obtained

from the samples and after that determines the organisms present in the sample.

Keywords: metagenomics, diagnostics, treatment


