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1. Introduction

A network is a set of items with connections between them. The Internet, the World

Wide Web, social networks like genealogical trees, networks of friends or co-workers,

biological networks like epidemiological networks, networks of citations between pa-

pers, distribution systems like postal delivery routes: they all take a form of networks.

Most social, biological and technological networks have specific structural properties.

Such networks are referred to as complex networks. An example of a complex network

of scientific collaborations is presented in Figure 1.1.

A network structure or a topology can be mathematically modelled as a graph with

set of vertices (or nodes) representing the items of the network. The network structure

can then be analysed using graph theory. An edge between two nodes represents a

connection between the two corresponding items. Edges can be directed or undirected,

depending on the nature of the connection.

Figure 1.1: A network graph of Paul Erdős and his collaborators, courtesy of Krebs [1]. The

nodes represent mathematicians and the edges represent the relationship "wrote a paper with".
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To better mimic the real-world (complex) network structure, it is common to add

attributes to nodes and/or edges or to have both directed and undirected edges on the

same graph.

For large-scaled complex networks that have millions or billions of vertices, the

study in the form of traditional graph theory is not sufficient or sometimes possible.

When this is the case, the statistical methods for quantifying large complex networks

are used.

The ultimate goal of the study of complex network structure is to understand and

explain the workings of systems built upon the network such as spreading of disease

or information propagation.

After statistical properties analysis, the model of the system or a process is created.

The model can help us understand the meaning of statistical properties - how they came

to be as they are and how they relate to the behaviour of a networked system. Based

on statistical properties and using the right model, the behaviour of networked systems

can be determined and predicted.

The basis of the complex network theory, the structure analysis and the process

modelling can be found in Newman [2].

1.1. Epidemic processes in complex networks

The models for stochastic processes such as disease spreading are categorized as ho-

mogeneous or heterogeneous mixing frameworks. The former assume that all individ-

uals in a population have an equal probability of contact and different equations can

be applied to understand epidemic dynamics. Since such models fail to describe the

realistic scenario of disease spreading, heterogeneity is introduced by using a network

structure.

There is an extremely close relationship between epidemiology and network the-

ory since the connections between individuals (or group of individuals) allowing an

infectious disease to propagate naturally define a contact network. Simplest epidemic

dynamics consider a system with fixed total population consisting of N individuals

modelled with undirected contacting network. We define the contact network as an

undirected and non-weighted graph G(N,L) with fixed set of nodes N and fixed set

of links L. A link (u, v) between two nodes exists if the two corresponding members

were in contact during the epidemic time.

The structure of the network has profound impact on the contagnion dynamics but

in order to understand the evolution of the epidemic over time we have to define the
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basic individual-level processes that govern the epidemic spreading. Complementary

to the network, epidemic modelling describes the dynamical evolution of the contagion

process within a population. The state of the art results on epidemic modelling in

complex networks can be found in Pastor-Satorras et al. [3].

Classic epidemic models generally assume the network is static during epidemic

process while the population can be divided into different classes or compartments

depending on the stage of the disease, such as susceptible (those who can contract

the infection), infectious (those who contracted the infection and are contagious), re-

covered, removed or immune. The model defines the basic processes that govern the

transition of individuals from one compartment to another. Each member of population

can be a part of exactly one compartment at once.

Understanding the structure of the transmission network along with choosing the

right epidemic model allows us to predict the distribution of infection and to simulate

the full dynamics in order to control disease or plan immunization. In this thesis we

will focus on SIR model for epidemic spreading and its modification, the ISS model

for modelling rumour diffusion.

1.2. Finding patient zero

The inverse problem of estimating the initial epidemic conditions like localizing the

source of an epidemic commonly known as the patient zero problem has only recently

been formulated.

In the patient zero problem the source(s) of an epidemic or information diffusion

propagation are determined based on limited knowledge of network structure or partial

history of the propagation. The survey of methods for identifying the propagation

source in networks can be found in Jiang et al. [4].

In the case of the SIR model there are three different approaches. Zhu and Ying

[5] proposed a simple path counting approach and prove that the source node mini-

mizes the maximum distance (Jordan centrality) to the infected nodes on infinite trees.

Lokhov et al. [6] used a dynamic message-passing algorithm and estimate the prob-

ability that a given node produces the observed snapshot using a mean-field approch

and an assumption of a tree-like contact network.

Antulov-Fantulin et al. [7] introduce analytical combinatoric, as well as Monte-

Carlo based methods for epidemic source detection problem. These methods produce

exact and approximate source probability distribution for any network topology based

on a snapshot of the epidemic at known discrete time T . The provided benchmark
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results show Monte-Carlo based MAP estimators outperform previous results on a

lattice network for the SIR model.

Additionally, these methods are applicable to many heterogeneous mixing models

(SIR, IS, ISS) and are able to introduce uncertainty in the epidemic starting time, as

well as uncertainty of temporal ordering of interactions. Even though the introduced

Monte Carlo methods assume the epidemic started from a single source, one can also

discriminate such hypothesis using Kolmogorov-Smirnov test [7].

1.3. Effects of network topology on epidemic spreading

and detectability of patient zero

Complex networks show various levels of correlation in their topology which can have

an impact on dynamical processes running on top of them.

Real-world networks of relevance for epidemic spreading are different from regular

lattices. Networks are hierarchically organized with a few nodes that may act as hubs

and where the vast majority of nodes have few direct connections.

Although randomness in the connection process of nodes is always present, orga-

nizing principles and correlations in the connectivity patterns define network structures

that are deeply affecting the evolution and behavior of epidemic and contagion process.

These complex features often find their signature in statistical distributions which are

generally heavy tailed and skewed.

Antulov-Fantulin et al. [7] have introduced a metric for source detectability based

on the entropy of estimated source probability distribution. The detectability of source

node differs based on models parameters concerning the rate of disease spreading.

Since topological properties of the network have profound impact on epidemic dy-

namics, the detectability of source node in relation to its topological properties is an

interesting analytical problem.
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2. Complex network structure

Most of real networks in social and biological systems are characterized by similar

topological properties: small average path length, high clustering coefficients, fat tailed

scale-free degree distributions and local network structure observable in the presence

of communities.

2.1. Measures and metrics

Since larger networks can be difficult to envision and describe only by the graph G, we

observe more detailed insights of the structure of these networks with various metrics.

Degree distribution

Degree distribution P (k) defines the probability that a vertex in the network interacts

with exactly k other vertices. That is, P (k) is the fraction of nodes in the network with

degree equal to k.

Scale-free power-law degree distribution of the form P (k) = Ak−γ where 2 <

γ < 3 appears in wide variety of complex networks. The networks with such property

are referred to as scale-free networks. This feature is a consequence of two generic

mechanisms: networks expand continuously by the addition of new vertices and new

vertices attach preferentially to sites that are already well connected [8]. It is often said

the scale-free distributions have "fat tails" since there tends to be many more nodes

with higher degree compared to a Poisson degree distribution in a network with links

formed completely independently.

Geodesic path

A path in a network is defined as an arbitrary sequence of vertices in which each pair

of adjacent vertices is directly connected in the graph.
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A geodesic path is the shortest path between two vertices. The small world network

property observable in complex networks is considered to be present when average

shortest path length is comparable to the logarithm of the network size.

Centrality

Centrality measures compare nodes and say something about how a given node relates

to the overall network.

Degree centrality describes how connected a node is in terms of direct connec-

tions. For a vertex v in a network with n vertices it is defined as deg(v)
n−1

. Since the

degree centrality captures only centrality in terms of direct connections, it doesn’t mea-

sure node’s marginal contribution to the network when the node has relatively few links

but lies in a critical location in the network which can be the case.

Closeness centrality describes how close a given vertex is to any other vertex. Let

dij denote the length of geodesic path from vertex i to vertex j. For vertex v closeness

centrality Cv is defined as harmonic mean between the distances of geodesic paths

from vertex v to all others:

Cv =
1

n− 1

∑
j 6=v

1

dvj
. (2.1)

Betweenness centrality describes how well situated a vertex is in terms of the

paths it lies on. Let σst be the number of geodesic paths between pairs of vertices vs
and vt and let σst(vi) be the number of the geodesic paths σst which pass via vertex vi.

The betweenness centrality is than defined as

C(vi) =
∑
s,t

σst(vi)

σst
. (2.2)

Neighbours characteristics like eigenvector centrality measure how important, cen-

tral or influential nodes neighbours are and capture a concept the vertex is more im-

portant if it has more important neighbours.

Let’s define the adjacency matrix A of network G with N nodes as a matrix of size

N × N that contains non-zero element Aij if there exist an edge between vertices i

and j. For an unweighed network all non-zero elements of A are equal to one. Note

the adjacency matrix is symmetric for undirected graphs and generally asymmetric for

directed graphs.

For the given vertex v, eigenvector centrality Cv [9] is proportional to the sum

of centralities of its neighbours:

λCv =
∑
k

AvkCk. (2.3)
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Figure 2.1: Graphical representation of a fraction of the .fr domain of Web, courtesy of

Alvarez-Hamelin et al. [10]. The vertices of the same coreness are represented with the same

color.

Consequently, Cv is eigenvector of adjacency matrix A corresponding to eigenvalue λ.

The standard convention is to use the eigenvector associated with the largest eigenvalue

for the eigenvector centrality.

K-core

A k-core of undirected graph G is a maximal connected subgraph of G in which all

vertices have degree at least k. The k-core is a measure of how sparse the graph is.

Additionally, a vertex u has coreness c if it belongs to a c-core but not to (c+ 1)-core.

The k-core can be obtained in O(|L|) time by iteratively removing all vertices of

degree less than k from the graph.

The k-core decomposition refers to a process of determining the coreness of each

node and grouping the nodes according to their coreness. The concept of k-core (de-

composition) was introduced to study the clustering structure of social networks and to

describe the evolution of random graphs. K-core decomposition of complex networks

reveals rich k-core architectures as presented in Figure 2.1.
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2.2. Modelling global network structure

2.2.1. Erdős Rényi graph model

Traditionally, networks of complex topology have been described with the random

graph theory of Erdős and Rényi [11], but in the absence of data on large networks, the

predictions of the ER theory were rarely tested in the real world.

This random graph model assumes we start with N vertices and connect each pair

of vertices with probability p. The formation is independent across links so the proba-

bility of generating a network with exactly m links is equal to pm(1− p)
N(N−1)

2
−m and

the expected number of links is 〈d〉 = pN(N − 1)/2.

The degree distribution of the generated random network is

P (d) =

(
N − 1

d

)
pd(1− p)N−1−d. (2.4)

For large n, the degree distribution follows a Poisson distribution P (d) = e−λλd/d!,

where

λ = N

(
N − 1

d

)
pd(1− p)N−1−d.

Erdős and Rényi [11] have described the behaviour of degree distribution for var-

ious values of p. The important result talks about the emergence of one large graph

component for higher values of p. In more detail,

• if Np < 1 a generated graph will almost surely have no connected components

of size larger than O(log(N)),

• if Np = 1 a graph will almost surely have a largest component whose size is of

order N2/3,

• if Np > 1 a graph will almost surely have a unique giant component, i.e. no

other component will contain more than O(log(N)) vertices.

In Erdős-Rényi model, maximum coreness is related to the average degree 〈d〉.
Since the topology is very homogeneus, it is also expected most vertices will belong

to the same k-core that is also the highest.

While random network can observe features like diameters small relative to the

network size, they lack certain features that are prevalent among complex networks,

such as high clustering and presence of communities.

8



2.2.2. Barabási-Albert graph model

Barabási-Albert model is the model of evolving a scale-free network which uses a pref-

erential attachment property thus creating a heterogeneous topology. The preferential

attachment mechanism is one of two generating mechanisms of scale-free networks [8]

and refers to building the network gradually where each new vertex tends to connect

to old vertices that are already well connected within the old network.

The Barabási-Albert graph is generated starting from m0 isolated vertices. At each

time step new vertices with m edges are added to the network m < m0. The new

vertex will create an edge to the existing node vi with probability proportional to its

degree ki.

The Barabási-Albert graph model produces a power law degree distribution P (k) ≈
k−3 in the limit of growth time, i.e. number of vertices. The average geodesic path in-

creases logarithmically with the size of the network.

By repetitively connecting each new node to the previous graph with exactly m

edges, we obtain a graph where any subgraph has a vertex of degree at most m and the

k-core of the graph is m.
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3. Epidemic process modelling

In the focus of this thesis are heterogeneous epidemic models on the contact network

formed by connections between single contacting individuals with transitions of indi-

viduals between compartments happening in discrete time steps.

3.1. SIR model

Wide range of diseases that provide immunity to the host can be successfully modelled

on a network whose members take one of three possible roles at a time: susceptible

(S), infected (I) or recovered (R) [12].

The diffusion of disease takes place between infected nodes and their susceptible

neighbours. An infectious node may also recover from the disease. The recovery grants

permanent immunity effectively erasing the member from the contacting network. The

possible events can be represented as

S + I
p−→ 2I, I

q−→ R. (3.1)

In the SIR model infection and recovery process completely determine the epi-

demic evolution. The transitions (3.1) occur spontaneously and independently in each

time step. In discrete-time formulation an infected individual when meeting suscepti-

ble will infect the neighbouring susceptible with probability p at each time step. The

recovery probability q is the probability the infected individual will recover for each

time step.

The transition probabilities p and q are often assumed constant and equal for all

nodes in the same epidemic process.

3.1.1. Simulating the discrete SIR epidemic

For the contacting network represented by graph G(N,L) and SIR parameters p and q,

we are able to simulate one time step of discrete SIR process. Let st, it and rt denote

sets of nodes that are respectively susceptible, infected and recovered after time step t.
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At time step t all previously infected nodes it−1 will try to infect their susceptible

neighbours independently of each other and at the same time. Afterwards the passive

recovery process will try to turn them to recovering nodes, each with probability q.

This process can be simulated with NaiveSIR algorithm [13] by putting all the

initially infected nodes in the queue. While traversing the nodes, we try to infect each

neighbouring node. When the new node gets infected, it gets pushed to the queue.

SIR simulation of one time step t is described in Algorithm 1.

Algorithm 1: One time step of NaiveSIR simulation on graph G.
Data: G - network, (p, q) -parameters of the SIR model, Iq - queue of infected

nodes, I - bitset of infected nodes, S - bitset of susceptible nodes, R -

bitset of recovered nodes

1 infected_size = size(Iq)

2 for k = 1 to infected_size do
3 if Iq is empty then
4 break
5 dequeue(u, Iq)

6 foreach v ∈ nei(u) do
7 if v ∈ S then
8 let transmission u→ v occur with probability p

9 if u→ v occured then
10 update I(v) and S(v)

11 let transmission u→ v occur with probability q

12 if u→ v occured then
13 update I(u) and R(u)

14 else
15 enqueue(u, Iq)

16 return {S, I, R}

Time and space complexity of NaiveSIR algorithm

For algorithm complexity analysis standard big-O notation is used (asymptotic upper

bound within a constant factor) [14]. In a single SIR step, simulation tries to infect all

neighbours of infected nodes that are susceptible, i.e. O(〈d〉) nodes where 〈d〉 denotes

the average node degree. Since after each SIR step each infected node is recovered with

probability q, the average number of time steps the node spends in infected state is a

11



sample from geometric distribution P (∆T = ∆t) = (1− q)∆t−1q with expectation 1
q
.

Total time complexity for one infected node is thus O( 〈d〉
q

). Finally, the average case

running time of the NaiveSIR algorithm is equal to O(E[X]〈d〉
q

) where E[X] denotes

total expected number of infected nodes [13].

The space complexity of NaiveSIR algorithm with respect to the number of links

L of the graph G is equal to O(L) since the memory holds a contact network G in a

form of adjacency list (O(L)), queue of infected nodes (O(N)) and indicators of each

compartment that are best implemented as a bitset data structure (O(1)).

3.1.2. Probability of compartment transitions in one time step of
SIR simulation

Probability of compartment transitions in one time step of SIR simulation can be easily

evaluated. Let nei(v) indicate a set of all neighbours of node v, nei(V ) a set of all

neighbours of all nodes in set V and neiV (v) = nei(v)∩V a set of all neighbours of v

that are also in V . After k-th time step of the SIR process the resulting ik and rk were

given. At time step k, only initially active nodes ik−1 and their neighbours nei(ik−1)

actively participate in the epidemic process. For each node v in ik−1∪nei(ik−1), one of

four independent events may happen during time step k and they are easily detectable

based on ik−1, rk−1, ik and rk:

• E1 : if v 6∈ ik−1 and v 6∈ rk−1 and v ∈ ik
node v was infected with probability 1− (1− p)neiik−1

(v)

• E2 : if v 6∈ ik−1 and v 6∈ rk−1 and v 6∈ ik
node v was not infected with probability (1− p)neiik−1

(v)

• E3 : if v ∈ ik−1 and v ∈ rk
node v was recovered with probability q

• E4 : if v ∈ ik−1 and v 6∈ rk
node v was not recovered with probability 1− q

Since all events E1 − E4 are independent and sets of nodes corresponding to each

event are disjoint while completely covering the set of active nodes ik−1 ∪ nei(ik−1),

the conditional probability of one time step SIR transition P (ik, rk|ik−1, rk−1) can be

calculated as

P (ik, rk|ik−1, rk−1) =
[
Πv∈E1(1− (1− p)neiik−1

(v))
][

Πv∈E2(1− p)
neiik−1

(v)
]

·
[
Πv∈E3q

][
Πv∈E4(1− q)

]
.

(3.2)
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Set neiik−1
(v) denotes the set of all neighbours of v that were infected at the beginning

of time step k, i.e. the set nei(v) ∩ ik−1.

3.2. Epidemic models as social contagion processes

Even though infectious diseases represent the central focus of epidemic modelling, the

model where an individual is strongly influenced by the interaction with its peers is

present in several other domains, especially in social context in the diffusion of infor-

mation, the propagation of rumour and adoption of innovation or behaviours. Since the

social contacts can in these domains generate epidemic-like outbreaks, simple models

for information diffusion are epidemic models modified to specific features of social

contagion. The crucial difference to pathogen spreading is that transmission of in-

formation involves intentional acts by both the sender and the receiver and it is often

beneficial for both participants.

3.2.1. Rumour spreading with ISS model

The need to study rumour spreading presents itself in a number of important technolog-

ical and commercial applications where it is desirable to spread the "epidemic" as fast

and as efficient as possible. In examples such as rumour based protocols for resource

discovery and marketing campaigns that use rumour like strategies (viral marketing)

the problem translates to design of an epidemic algorithm in such a way that the given

information reaches as much nodes as possible, similarly to a rumour.

Models for rumour spreading are variants of the SIR model in which the recovery

process does not occur spontaneously, but rather is a consequence of interactions. The

modification mimics the idea it is worth spreading the rumour as long as it is novel for

the recipient.

This process can be formalized as a model where each of N members of the con-

tacting network can be a part of one of three compartments: ignorant (S), spreader

(I) and stifler (R). Ignorants have not heard the rumour and are susceptible to being

informed. Spreaders are actively spreading the rumour, while stiflers know about the

rumour but they’re not spreading it.

The spreading process evolves by direct contacts of spreaders with others in the

population. When a spreader meets an ignorant, the latter turns into a new spreader

with probability a. When a spreader meets another spreader or a stifler, the former

spreader turns into stifler with probability b and the latter remains unchanged. This
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model is known as ISS (Ignorant-Spreader-Stifler) model [15]. The possible events

can be represented as

S + I
a−→ 2I, R + I

b−→ 2R, 2I
b−→ R + I. (3.3)

Since we are examining the spreading process in discrete time, at each time step the

current spreaders try to interact with their neighbours. A modification of the NaiveSIR

algorithm for rumour spreading simulation of one time step t is described by Algorithm

2.

Algorithm 2: One time step of ISS simulation with modified NaiveSIR algorithm

on graph G.
Data: G - network, (a, b) - parameters of the ISS model, Iq - priority queue of

spreader nodes, I - bitset of spreader nodes, S - bitset of ignorant nodes,

R - bitset of stifler nodes

1 stifler_size = size(Iq)

2 for k = 1 to stifler_size do
3 if Iq is empty then
4 break
5 dequeue(u, Iq)

6 foreach v ∈ nei(u) do
7 if v ∈ S then
8 let transmission u→ v occur with probability a

9 if u→ v occured then
10 update I(v) and S(v)

11 else
12 let transmission v → u occur with probability b

13 if v → u occured then
14 update I(u) and R(u)

15 if u ∈ I then
16 enqueue(u, Iq)

17 return {S, I, R}
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4. Patient zero – single source
epidemic detection

In accordance with Antulov-Fantulin et al. [7], we will focus on a patient zero problem

given snapshot of population at time T and complete knowledge of underlying con-

tacting network modelled by graph G(N,L) with assumption the epidemic has started

from a single source node and that it is governed by the SIR process with known p and

q.

The estimators proposed by Antulov-Fantulin et al. [7] will be presented in this

chapter, while the newly proposed estimators based on importance sampling technique

will be presented in the next chapter.

4.1. Problem definition

Let random vector ~S = (S(1), . . . , S(N)) indicate the nodes that got infected up to a

predefined temporal threshold T with SIR(p, q) epidemic process on network G with

N nodes. S(i) is a Bernoulli random variable with the value 1 if the node i got infected

before time T from the start of the epidemic process.

We observe one realization ~s∗ of ~S – the epidemic snapshot at time T and want to

infer which nodes from the set of infected or recovered nodes Θ = {θ1, θ2, . . . , θm} are

most likely to be the source of observed epidemic process. The finite set of possible

source nodes Θ is determined by realization ~s∗.

A maximum aposteriori probability estimate (MAP) is the node with the highest

probability for being the source of the epidemic spread for given target realization ~s∗:

θ̂MAP = arg maxθi∈ΘP (Θ = θi|~S = ~s∗) (4.1)

By applying the Bayes theorem with equal apriori probabilities P (Θ = θi), probability
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in (4.1) can be expressed as

P (Θ = θi|~S = ~s∗) =
P (~S = ~s∗|Θ = θi)P (Θ = θi)∑

θk∈Θ P (~S = ~s∗|Θ = θk)P (Θ = θk)

=
P (~S = ~s∗|Θ = θi)∑

θk∈Θ P (~S = ~s∗|Θ = θk)
.

(4.2)

4.2. Direct Monte Carlo epidemic source detector

The integration problem

Ef [h(X)] =

∫
X

h(x)f(x)dx (4.3)

of computing the expectation of the function h(X) : X → R of random variable

X with density f(X) can be estimated using Monte Carlo technique with n samples

X1, . . . , Xn generated from density f as the empirical average

hn =
1

n

n∑
j=1

h(Xj). (4.4)

The convergence of hn towards Ef [h(X)] is assured by the Strong Law of Large Num-

bers.

Inferring the probability P (~S = ~s∗|Θ = θi) up to multiplicative constant is an inte-

gration problem equivalent to expectation of Kronecker delta function δ(~S) = 1{~S =

~s∗} where ~S is a random variable governed by probability distribution P (~S|Θ = θi).

Let mi denote number of realizations out of n that completely correspond to ~s∗ for

a fixed source θi estimated using Monte Carlo technique:

mi =
n∑
j=1

1{~Si = s∗} (4.5)

where ~Si are drawn from P (~S|Θ = θi).

The estimate mi is obtained using Direct Monte Carlo technique by simulating

epidemic process up to time T starting from a single infected node θi and checking

whether the generated realization of ~Si coincides with ~s∗. Since mi is estimation of

P (~S = ~s∗|Θ = θi) up to multiplicative constant 1/n for all θi ∈ Θ, we derive Direct

Monte Carlo MAP detector based on the estimation of probability P (Θ = θi|~S = ~s∗)

by combining (4.5) with Bayes rule (4.2):

P̂i
n

= P̂ (Θ = θi|~S = ~s∗) =
mi

m
(4.6)
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where m =
∑n

j=1mj .

The accuracy of Direct Monte Carlo estimation is controlled by convergence con-

ditions. Upon estimating two source PDF’s P̂ n
i and P̂ 2n

i with n and 2n independent

simulations respectively, the estimated distribution is said to converge when the fol-

lowing conditions are satisfied:

|P̂ 2n
MAP − P̂ n

MAP |/P̂ 2n
MAP ≤ c and |P̂ 2n

i − P̂ n
i | ≤ c ∀θi ∈ Θ. (4.7)

The term P̂MAP corresponds to MAP probability of estimated distribution P̂ .

If the size of realization ~s∗ is big, the number of simulations required to obtain

reliable estimations can be large. This makes it is crucial to optimise the simulation

procedure.

Since the estimations for different source node candidates are independent, the

computations can be parallelised.

Additionally, a prunning mechanism can be incorporated. If a simulation infects a

node that was not infected during the target epidemic represented by realization ~s∗, it

is safe to stop the simulation prior to ending time T and call the partial sample unequal

to target realization ~s∗.

Algorithm 3: Direct Monte Carlo estimation of number of realizations out of n

simulations completely corresponding to ~s∗ after T time steps for a fixed source

node θi.

1 Data: G - network, (p, q) - parameters of the SIR process, ~s∗ - target

realization, T - temporal threshold, θi - proposed source node, n - number

of simulations

2 mi = 0

3 for d = 1 to n do
4 for t = 1 to T do
5 Continue SIR simulation (d, p, q, θi) for time step t and obtain ~S(d)

t

6 if ∃j ∈ N : (S
(d)
t (j) == 1 and s∗(j) == 0) then

7 break

8 if ~S(d)
T equals ~s∗ then

9 mi = mi + 1

10 return mi
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4.3. Soft Margin epidemic source detector

Let ~S(j)
θ denote j-th sample (outcome) obtained by Monte Carlo simulation of conta-

gion process with source node θ and duration of T time steps. ~S(j)
θ is one realization

of random binary vector ~Sθ that describes the outcome of an epidemic process. A sim-

ilarity measure ϕ : (~Sθ × ~Sθ) → [0, 1] can be defined between any two realizations of
~Sθ. For example, ϕ can be defined as the Jaccard similarity function:

ϕ(~S1, ~S2) =
~S1 ∩ ~S2

~S1 ∪ ~S2

=

∑N
j=1(S1(j) = 1 and S2(j) = 1)∑N
j=1(S1(j) = 1 or S2(j) = 1)

. (4.8)

Moreover, we can define a discrete random variable ϕ(~s∗, ~Sθ) that measures the

similarity between fixed realization ~s∗ and random realization from ~Sθ. Let PDF of that

random variable be fθ(x) where x = ϕ(~s∗, ~Sθ). Since ϕ(~s∗, ~S) takes discrete values,

the probability density function is an integral of a range of Dirac delta functions, each

positioned at one value of ϕ(~s∗, ~S) and weighted by corresponding probability.

By using Monte Carlo method we can take PDF definition as an integration prob-

lem (4.3) and sample from this discrete distribution {p1, . . . , pd} of ϕ(~s∗, ~S) to obtain

the PDF estimate:

fθ(x) =

∫ 1

0

pkδ(x− xk)dx ≈
1

n

n∑
i=1

δ(x− ϕ(~s∗, ~S
(i)
θ )) (4.9)

where δ(x) denotes the Dirac delta function.

4.3.1. Soft Margin estimator

The Soft Margin estimator is defined as

P̂a(~S = ~s∗|Θ = θ) =

∫ 1

0

wa(x)f̂θ(x)dx (4.10)

where wa(x) is a weighting function and f̂θ(x) is the estimated PDF of the random

variable ϕ(~s∗, ~Sθ). For wa(x) Antulov-Fantulin et al. [7] proposed a Gaussian weight-

ing form wa(x) = e−(x−1)2/a2 .

With Soft Margin approximation the problem definition is altered to estimating the

number of realizations with similarity to ~s∗ in the interval around ϕ = 1 defined by

Gaussian weighting function wa(x), as opposed to estimating the number of realiza-

tions with similarity strictly equal to ϕ = 1 like with Direct Monte Carlo method.

Appropriate values of parameter a can be deduced from contour plot in Figure

4.1. For a close to 1, Soft Margin approximation includes more asimilar samples. In
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the limit where a → 0 Soft Margin approximation converges to Direct Monte Carlo

estimate.
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Figure 4.1: Contour plot of Gaussian weighting function wa(x) = e−(x−1)2/a2 .

The Soft Margin formula 4.10 can be further simplified by combining with 4.9:

P̂a(~S = ~s∗|Θ = θ) =

∫ 1

0

wa(x)f̂θ(x)dx

=

∫ 1

0

wa(x)
1

n

n∑
i=1

δ(x− ϕ(~s∗, ~S
(i)
θ ))dx,

(4.11)

and further by using the property of Dirac delta function
∫∞
−∞ f(x)δ(x− b)dx = f(b):

P̂a(~S = ~s∗|Θ = θ) =
1

n

n∑
i=1

∫ 1

0

wa(x)δ(x− ϕ(~s∗, ~S
(i)
θ ))dx

=
1

n

n∑
i=1

wa(ϕ(~s∗, ~S
(i)
θ ))

=
1

n

n∑
i=1

e
(ϕi−1)2

a2 .

(4.12)

Since our final goal is estimation of probability distribution P (Θ = θi|~S = ~s∗), for

numerical reasons it is wise to use likelihood nP̂ (Θ = θi~S = ~s∗) in the calculation

of 4.2 instead of the estimated probability P̂ (Θ = θi|~S = ~s∗) when the number of

simulations n used to estimate P̂ is the same for all potential source nodes.

Note that it’s not needed to determine constant a in advance. The parameter a can

be chosen as the infinum of the set of parameters for which the source probability dis-

tribution estimate P̂a(Θ = θi|~S = ~s∗) has converged under the convergence property

4.7.
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Additionally, for a fixed number of simulations n, PDF’s based on different param-

eters a can be estimated with one set of samples by evaluating 4.12 for different values

of parameter a.

Algorithm 4: Soft Margin approximation of P (~S = ~s∗|Θ = θi) for a fixed source

node θi.
Data: G - network, (p, q) - parameters of the SIR process, ~s∗ - target realization,

T - temporal threshold, θi - proposed source node, n - number of

simulations, a - Soft Margin parameter

1 for i = 1 to n do
2 Run SIR simulation (p, q, θi) for T time steps and obtain ~S(i)

T

3 Calculate and save ϕi = ϕ(~s∗, ~S
(i)
T )

4 Calculate P̂ (~S = ~s∗|Θ = θi) = 1
n

∑n
i=1 e

−(ϕi−1)2

a2

5 return P̂ (~S = ~s∗|Θ = θi)

4.4. Time complexity of Direct Monte Carlo and Soft

Margin epidemic source detectors

The average run time complexity of Monte Carlo epidemic source detectors Direct

Monte Carlo and Soft Margin is mnRTM , where m denotes the number of potential

sources in the observed realization, n the number of samples of the random variable ~Sθ
and RTM denotes the average run-time complexity of sampling one realization from

contagion process M [7].

Note that in the worst-case scenario the number of potential sources is proportional

to the network size, but in reality we are mostly interested in epidemic source detection

problems in which the number of potential sources is much smaller than the network

size.

Additionally, different Monte Carlo estimators have different convergence prop-

erties with respect to number of samples n. Under convergence conditions 4.7 and

c = 0.05 the Soft Margin estimator converges for n ∈ [104, 106] on the benchmark

lattice dataset on which Direct Monte Carlo requires n ∈ [106, 108] simulations for

each potential source node, as presented in Figure 6.7.
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5. Importance sampling based
epidemic single source detection

5.1. Importance sampling

Importance sampling is a technique for estimating properties of a particular distribution

with samples generated from a different distribution than the one of interest. The tech-

nique is used with Monte Carlo method as an estimator variance reduction technique

since the new sampling distribution of choice is usually biased towards realizations

that have more impact on the parameters being estimated.

Suppose we want to estimate area under f(x) plotted in Figure 5.1. With Monte

Carlo technique we sample uniformly at random from x and add each sampled value

f(x) to the estimate. The importance of each sample in the estimate depends on the

value of the function in that point. To gain better estimate with fewer number of sam-

ples one might want to sample x from a density similar to f(x). By sampling from

g(x) to estimate area under f(x), values of x that are more included in the estimation

will be sampled more frequently.
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Figure 5.1: Target density y = f(x) and biased importance density y = g(x).
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The method of importance sampling is estimation of the integration problem (4.3)

based on generating a sample X(1), . . . , X(n) from a given biased distribution g when

in fact the samples X(i) come from the target distribution f:

Ef [h(X)] =

∫
X

h(x)f(x)dx =

∫
X

h(x)
f(x)

g(x)
g(x)dx ≈ 1

n

n∑
j=1

f(X(j))

g(X(j))
h(X(j)). (5.1)

By choosing to sample from the biased distribution g, we are left with the extra weight

w(j) = f(X(j))

g(X(j))
from the integral. The weight w(j) corrects the bias of the sampling

procedure.

The new estimator converges whatever the choice of distribution g, as long as

supp(g) ⊃ supp(f)1, i.e. for each generated sample the weight w(j) has to be finite

[16].

Note the estimation can be done with unbiased estimate

1

n

n∑
i=1

w(i)h(X(i)), (5.2)

or with a weighted estimate ∑n
i=1 w

(i)h(X(i))∑n
i=1w

(i)
. (5.3)

When using the weighted estimate, we only need to know the ratio f(x)/g(x) up to a

multiplicative constant. Although inducing a small bias, the weighted estimate often

has a smaller mean squared error than the unbiased one [16].

5.1.1. Measuring the quality of importance distribution

By properly choosing g(·) one can reduce the estimator variance substantially. In order

to make the estimation error small, one wants to choose g(x) as close in shape to

f(x)h(x) as possible. The efficiency of importance distribution is difficult to measure.

Effective sample size (ESS) is commonly used to measure how different the impor-

tance distribution is from the target distribution. ESS will give the size of an iid sample

set with the same variance as the current sample set. Suppose we have n independent

samples generated from g(x). The ESS is then defined as

ESS(n) =
n

1 + varg[w(x)]
. (5.4)

The variance here is estimated as a square of the coefficient of variation of the weights:

cv2 =

∑n
j=1(w(j) − w̄)2

(n− 1)w̄2
(5.5)

1supp(g) = {x|g(x) 6= 0}
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where w̄ is sample average of the weights w(j). Effective sample as a measure of

efficiency can be partially justified by the delta method [17].

5.2. Sequential importance sampling

Since it is not trivial to design a good importance sampling density, especially for high

dimensional problems, one may build up the importance density sequentially [17].

Suppose we can decompose x as x = (x1, . . . , xd) where each of the xj may be multi-

dimensional. That is especially helpful when the state space of xt+1 is an augmentation

of state xt. The importance distribution can then be constructed as

g(x) = g1(x1)g2(x2|x1)g3(x3|x1, x2) . . . gd(xd|x1, . . . , xd−1)

With recursive form we hope to obtain some guidance from the target density while

building up the importance density. We can then rewrite the target density as

f(x) = f1(x1)f2(x2|x1)f3(x3|x1, x2) . . . fd(xd|x1, . . . , xd−1)

and the weights as

w(x) =
f1(x1)f2(x2|x1)f3(x3|x1, x2) . . . fd(xd|x1, . . . , xd−1)

g1(x1)g2(x2|x1)g3(x3|x1, x2) . . . gd(xd|x1, . . . , xd−1)
(5.6)

which suggests a recursive monitoring and computing of importance weight

wt(xt) = wt−1(xt−1)
f(xt|xt−1)

g(xt|xt−1)
. (5.7)

In other words, we build samples and importance weights sequentially. Each par-

tial sample xt−1 is extended using generator based on transitional importance den-

sity g(xt|xt−1). For the generated sample x1, . . . xt the target transitional density

f(xt|xt−1) is calculated. Final importance weight wd(xt) can be calculated using the

series of transitional target and importance densities for the particular sample. At the

end, wd(xd) is equal to w(x).

By using the recursive process we can stop generating further components of x if

the partial weight derived from the sequentially generated partial samples is too small

in relation to other weights and we can take advantage of current set of samples xt−1

in design of gt(xt|xt−1).

Finally, the sequential importance sampling method can be defined as d Sequential

importance sampling (SIS) steps as presented in Algorithm 5.
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Algorithm 5: Sequential importance sampling (SIS) procedure
Data: n - number of samples

1 for i = 1 to n do
2 Initialize X(i)

0 .

3 for t = 1 to d do
4 for i = 1 to n do
5 Draw X

(i)
t from gt(xt|X(i)

t−1), and let X(i)
t = (X

(i)
t−1, X

(i)
t ).

6 Compute

wt(X
(i)
t ) = wt−1(X

(i)
t−1)

f(X
(i)
t |X

(i)
t−1)

g(X
(i)
t |X

(i)
t−1)

.

5.2.1. Improving the SIS procedure with resampling

When the system grows, the variance of the importance weights wt increases since

the process becomes martingale [18]. After a certain number of steps, many of the

weights become very small and a few very large. In that situation one may want to use

a resampling strategy.

The role of resampling is to prune away "bad" samples and to split the good ones

by rearranging the samples in existing sample set and modifying their weights accord-

ingly. The new set of samples is also properly weighted by new weights with respect

to g.

The resampling step is done on the existing partial sample set before expanding it

with the SIS step before inner loop in Algorithm 5.

Two classic resampling techniques - simple random sampling and residual sam-

pling - are presented as Algorithms 6 and 7. Residual sampling dominates the simple

random sampling in having smaller estimator variance [17].

Algorithm 6: Simple random sampling for the SIS procedure

Data: St = {X(j)
t , j = 1, . . . , n} - collection of n partial samples of length t,

which are properly weighted by the collection of weights

Wt = {w(j)
t , j = 1, . . . , n} with respect to the density g

1 Sample a new set of partial samples, S ′t from St according to weights w(j)
t .

2 Assign equal weights Wt/n, to samples in S ′t where Wt =
∑n

i=1w
(i)
t .
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Algorithm 7: Residual resampling for the SIS procedure

Data: St = {X(j)
t , j = 1, . . . , n} - collection of n partial samples of length t,

which are properly weighted by the collection of weights

Wt = {w(j)
t , j = 1, . . . , n} with respect to the density g

1 for j = 1 to n do
2 Retain kj = bnw(∗j)

t c copies of X(j)
t where w(∗j)

t = w
(j)
t /Wt.

3 Let nr = n−
∑n

j=1 kj .

4 Obtain nr draws from St with probabilities proportional to

nw
(∗j)
t − kj,∀j = 1, . . . n.

5 Assign equal weights Wt/n, to samples in S ′t where Wt =
∑n

i=1w
(i)
t .

5.2.2. Resampling schedule

The resampling step tends to result in a better group of ancestors so as to produce better

descendants. The success of resampling, however, relies heavily on the Markovian

structure among the state variables x1, x2, . . . xd. If resampling from set {x(j)
t−1, j =

1, . . . n} is not equivalent to resampling from {x(j)
t−1, j = 1, . . . , n} – the set of the

"current state", frequent resampling will rapidly impoverish diversity of the partial

samples produced earlier. When no simple Markovian structure is present, frequent

resampling generally gives bad results.

For this reason, it is desirable to prescribe scheduling for resampling to take place.

The resampling schedule can be either deterministic or dynamic. When the schedule

is dynamic, some small bias may be introduced.

With a deterministic schedule, we conduct resampling at time t0, 2t0, . . . , where

t0 is given in advance. In a dynamic schedule, a sequence of thresholds c1, c2, . . . , cd

is given in advance. We monitor the coefficient of variation of the weights cv2
t and

invoke the resampling step when event cv2
t > ct occurs. A typical sequence of ct can

be ct = a+ btα.

Increasing ct after each SIS step makes sense since, as the system evolves, cv2
t

increases stochastically while the variance of importance weights increases.
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5.3. Sequential importance sampling epidemic source

detector

Given snapshot ~s∗ that holds all infected nodes up to time T we want to determine

the probability P (θi|~S = ~s∗) of an epidemic starting in node θi. Since all apriori

probabilities P (θi) are the same, we can approximate aposteriori probabilities P (~S =

~s∗|θi) and use them to determine P (θi|~S = ~s∗) as we did in 4.2. These aposteriori

probabilities were estimated with Direct Monte Carlo and Soft Margin method up to a

multiplicative constant which can also be done using Sequential importance sampling

technique.

First note the SIS step as defined in Algorithm 5 is based on densities of a complete

history of the process or, at time t, all the process steps up to time t. The target

density is thus the joint probability of all steps taken in the process. Since we are

only interested in the final realization, it makes sense to use target and importance

probability distributions of the form

f(sT ) = ft(i1, r1)ft(i2, r2|i1, r1)ft(i3, r3|i2, r2) . . . ft(iT , rT |iT−1, rT−1)

g(sT ) = g1(i1, r1)g2(i2, r2|i1, r1)g3(i3, r3|i2, r2) . . . gt(iT , rT |iT−1, rT−1)
(5.8)

where ik denotes a vector of infected nodes after SIS step k, and rk denotes a vector of

recovered nodes after step k. Note that ik ∪ rk = sk and ik ∩ rk = ∅. Each SIS step

corresponds to one time step of discrete SIR simulation and realization sT belongs to

discrete random variable ~Sθ.

Each adjacent element of the sequence (i1, r1), (i2, r2), (i3, r3), . . . , (iT , rT ) is con-

nected with one SIR step. These SIR steps build up the target distribution f(sT )

and since each discrete SIR step is described by the same process 3.1, the target

transitional distributions ft(ik, rk|ik−1, rk−1) for each SIS step are the same. On the

other hand, the SIS procedure let us change the transitional importance distributions

gk(ik, rk|ik−1, rk−1), k ∈ {1..T} based on the current set of partial samples as long

as we are able to calculate target transitional probability ft(ik, rk|ik−1, rk−1) for each

sample.
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5.3.1. Modelling the target distribution

We can evaluate the partial target distribution ft(ik, rk|ik−1, rk−1) in closed form. This

is exactly the probability of one time step SIR transition given with Formula 3.2:

P (ik, rk|ik−1, rk−1) =
[
Πv∈E1(1− (1− p)neiik−1

(v))
][

Πv∈E2(1− p)
neiik−1

(v)
]

·
[
Πv∈E3q

][
Πv∈E4(1− q)

]
,

with events E1 − E4 as defined in 3.1.2.

5.3.2. Modelling the importance distribution

With our sequential sampling procedure we will try to estimate the ratio of realizations

at time T that are equal to ~s∗ for some fixed starting node θi up to a multiplicative

constant. The ideal importance distribution is biased towards that goal. Since we

are building the final source distribution sequentially from partial samples, our biased

sampling must sample reasonably well at each step – it must not be to "slow" or too

"fast", especially since it is not clear what samples at mid steps are valuable to us.

However, it is certain we do not want to infect the nodes that were never infected

or recovered in the snapshot ~s∗. By excluding those nodes from events E1 − E4 while

retaining fixed p we implicitly make the probability of infection per time step for the

nodes in the target realization higher.

Modified transitions and their corresponding transitional probabilities at each time

step can be determined from ik−1, rk−1 and ~s∗. For the SIR model, the transitions are

similar to 3.1:

• T ′1 : ifv ∈ s∗ and v 6∈ ik−1 and v 6∈ rk−1

– infect v with probability 1− (1− p)neiik−1
(v)

• T ′2 : ifv 6∈ s∗ and v 6∈ ik−1 and v 6∈ rk−1

– infect v with probability 0

• T ′3 : if v ∈ ik−1

– recover node v with probability q.

This biased transitional distribution gk(ik, rk|ik−1, rk−1) defined by one-time-step

long transitions T ′1 − T ′3 can be sampled without conducting any SIR simulations. The

sample is generated by traversing the nodes in the target realization ~s∗. If the node is

not infected yet, it may be infected if its neighbours are infected with probability 1 −
(1− p)neiik−1

(v), as in transition T ′1. Otherwise, the recovery process is simulated with

probability q for recovery. Since all transitions are independent, the biased transitional
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probability can be computed easily. The generator of partial samples governed by

biased transitional distribution gk(ik, rk|ik−1, rk−1) is presented in Algorithm 8.

Algorithm 8: Partial sample generator based on importance distribution

gk(ik, rk|ik−1, rk−1)

Data: (p, q) - parameters of the SIR process, ik−1 - infected nodes at the

beginning of time step k, rk−1 recovered nodes at the beginning of time

step k, s∗ - target realization

Result: ik - infected nodes after time step k, rk - recovered nodes after time step

k, g = g(ik, rk|ik−1, rk−1) - probability of generating realizations ik, rk
based on ik−1, rk−1 from the importance generator

1 ik = ik−1, rk = rk−1, g = 1

2 foreach v ∈ nei(ik−1) ∩ s∗ do
3 if v 6∈ ik−1 and v 6∈ rk−1 then
4 D = |neiik−1

(v)|
5 let infection occur with probability pv = 1− (1− p)D

6 if infection occured then
7 update ik(v)

8 g = g · pv
9 else

10 g = g · (1− pv)
11 foreach v ∈ ik−1 ∩ s∗ do
12 let recovery occur with probability q

13 if recovery occured then
14 update ik(v) and rk(v)

15 g = g · q
16 else
17 g = g · (1− q)
18 return (ik, rk, g)

In order to calculate importance weights wk(ik, rk) recursively like in 5.7, one

needs to be able to compute target transitional probability ft(ik, rk|ik−1, rk−1) based

on known partial sample ik, rk and its base ik−1, rk−1. This computation can be done

by traversing potential active nodes in the SIR process: infected nodes at the beginning

of time step k defined by set ik−1 for recovery, and their susceptible neighbours for in-

fection. Computation of target transitional probability ft(ik, rk|ik−1, rk−1) is described
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by Algorithm 9.

Note the biased generator in Algorithm 8 can be run with arbitrary parameters p

and q. The samples generated with arbitrary p and q can be included in the set of

samples as long as the transitional target distribution can be calculated.

Algorithm 9: Computation of f(ik, rk|ik−1, rk−1) - target transitional probability

of generated partial sample
Data: (p, q) - parameters of the SIR process, ik−1 - infected nodes at the

beginning of step k, rk−1 recovered nodes at the beginning of step k, ik -

infected nodes after step k, rk - recovered nodes after step k, s∗ - target

realization

1 f = 1

2 foreach v ∈ nei(ik−1) do
3 if v 6∈ ik−1 and v 6∈ rk−1 then
4 D = |neiik−1

(v)|
5 if v ∈ ik then
6 f = f · [1− (1− p)D]

7 else
8 f = f · (1− p)D

9 foreach v ∈ ik−1 do
10 if v ∈ rk then
11 f = f · q
12 if v 6∈ rk then
13 f = f · (1− q)
14 return f

5.3.3. Building the epidemic source detector

To estimate ratio of realizations that are equal to the target realization ~s∗ up to multi-

plicative constant at time T for a fixed source θ, SIS step (Algorithm 5) will be con-

ducted T times. In each step, the samples are generated using importance distribution

g(ik, rk|ik−1, rk−1) and the transitional target probability f(ik, rk|ik−1, rk−1) as well

as transitional importance probability g(ik, rk|ik−1, rk−1) for the generated sample are

calculated. Based on the data one can obtain the transitional partial weight wk for said

partial sample.

After expanding the partial samples T times, one obtains the estimate on number of
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realizations equal to the target realization ~s∗ by taking weighted average of all weights

corresponding to the realization hits in the final sample set,

mi =
1

n

n∑
j=1

w
(j)
T 1{s(j)

T = ~s∗}, (5.9)

where s(j)
T = i

(j)
T ∪ r

(j)
T corresponds to one realization of discrete random variable

~Sθ. Finally, the pseudocode for the source detector based on sequential importance

sampling is presented in Algorithm 10.

Algorithm 10: Sequential importance sampling estimation of expected number

of realizations completely corresponding to ~s∗ after T time steps for a fixed

source node θi
Data: G - network, (p, q) - parameters of the SIR process, θi - proposed source

node, ~s∗ - target realization, T - temporal threshold, n - number of

samples

1 for j = 1 to n do
2 Initialize i(j)0 = {θi}, r(j)

0 = ∅, w(j)
0 = 1

3 for t = 1 to T do
4 resample({(i(j)t−1, r

(j)
t−1) ∀j ∈ [1..n]})

5 for j = 1 to n do
6 Draw i

(j)
t , r

(j)
t from gt(it, rt|i(j)t−1, r

(j)
t−1) with Algorithm 8.

7 Compute ft(i
(j)
t , r

(j)
t |i

(j)
t−1, r

(j)
t−1) with Algorithm 9.

8 Compute

wt(i
(j)
t , r

(j)
t ) = wt−1(i

(j)
t−1, r

(j)
t−1)

ft(i
(j)
t , r

(j)
t |i

(j)
t−1, r

(j)
t−1)

gt(i
(j)
t , r

(j)
t |i

(j)
t−1, r

(j)
t−1)

.

9 mi = 0

10 for j = 1 to n do
11 if i(j)T ∪ r

(j)
T equals ~s∗ then

12 mi = mi + wT (i
(j)
T , r

(j)
T )

13 return (mi)

It is obvious the accuracy of the estimate 5.9 depends on number of realizations

in the sample set that are equal to ~s∗ after final SIS step. To increase this number,

one can alter the generation of samples in the final SIS step to maximize the number

of realization hits. This can safely be done by altering the importance generator and
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making all eligible nodes infected with probability p = 1 at the final step of the SIS

procedure.

It may also be reasonable to increase p at each step of the SIS procedure but it is

not clear when or in what volume this should be done. By using too high or too low p

at earlier SIS steps, obtained samples will in general have really small final weight wT
since its target transitional probability will be close to 0.

Additionally, one might want to use a resampling technique for simulations with

many SIS steps or to fix said small weights. This has to be done carefully too since

our target event is rare and weights w are naturally small. By using the resampling

schedule based on ESS or vc2, the decision on when to resample is not governed by

absolute value of the weights, but rather on their coefficient of variation. For example,

resampling can be invoked in SIS step t when vc2(wt−1) > 2t.

5.3.4. Soft Margin SIS source detector

Incorporating Soft Margin ideas to sequential importance sampling based epidemic

source detector allows us to use all generated samples in the estimation of mi, as

opposed to using only the ones completely corresponding to the target realization ~s∗ as

presented in Algorithm 10.

Using the set of generated biased samples {(i(j)T , r
(j)
T ) ∀j ∈ [1..n]}, we approxi-

mate mi with

mi ≈
n∑
j=1

wT (i
(j)
T , r

(j)
T )e

(ϕj−1)2

a2 (5.10)

where e
(ϕj−1)2

a2 corresponds to Gaussian weighting function with ϕi = ϕ(s
(j)
T , ~s∗)

defined as Jaccard similarity 4.8.

Compared to Soft Margin detector described in Algorithm 4, Soft Margin SIS de-

tector uses the set of biased samples and will have smaller estimator variance for the

same parameter a and the same number of samples. Additionally, since all biased sam-

ples are realizations equal to some subset of ~s∗ , the realizations containing nodes not

in ~s∗ are excluded from approximation 5.10, as opposed to Soft Margin approximation

where these realizations are also being used in the approximation.

5.3.5. Time and space complexity of SIS source detector

To generate estimation of source probability distribution P (Θ = θi|~S = ~s∗) one needs

to run Sequential importance sampling procedure as described in Algorithm 10 m
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times where m denotes the number of potential sources in the observed realization,

i.e. number of realizations of random variable Θ.

Within each Sequential importance sampling procedure, partial sampling step is

conducted T times, with each time n partial samples being extended with the biased

generator Algorithm 8.

Time complexity of generating one full sample (running Algorithm 8 T times) is

O(mmin(T, 1
q
)) since one tries to infect or recover at most once no more than each

node in the target realization ~s∗ which is at most m nodes and the expected number

of time steps an infected node remains active is min(T, 1
q
). Infecting or recovering

process is simulated by regular uneven dice throw.

Each extension of a partial sample is followed by calculation of target transi-

tional probability based on generated partial sample presented in Algorithm 9. The

time complexity of running this algorithm for each extension of a partial sample is

O(m〈d〉min(T, 1
q
)) where 〈d〉 denotes average node degree. The term m〈d〉 corre-

sponds to average upper bound on the size of set neiik−1
∪ ik−1 of infected nodes and

their neighbours. This is exactly the set being traversed in the calculation of target

transitional probability. Each infected node is expected to be in that set for min(T, 1
q
)

time steps.

Finally, generating estimation P (Θ = θi|~S = ~s∗) for all nodes in Θ has time

complexity O(nm2〈d〉min(T, 1
q
)) since Algorithm 8 and Algorithm 9 are being run

Tn times where n is the number of samples being used.

While the average time complexity of Direct Monte Carlo and Soft Margin Monte

Carlo is O(nmE[X]〈d〉min(T, 1
q
)) for the SIR model, comparing time complexity of

the SIS procedure to Direct Monte Carlo and Soft Margin Monte Carlo is reduced

down to where the size of the realization m lays in the distribution of epidemic size for

the particular epidemic environment whose expectation is E[X].

Introducing resampling to SIS detector does not influence the upper bound time

complexity. Introducing Soft Margin estimation to SIS detector does not influence the

upper bound time complexity either.

When talking about time complexity, one has to mention the range of number of

samples for which the estimators typically converge. Breakdown on the converging

number of simulations for epidemic dynamics on a lattice network is presented in

Figure 6.7 and analysed in the next chapter.

The SIS detector can also be parallelised by assigning each worker a set of samples

to expand. To enable resampling one needs to aggregate the partial weights for all

partial samples corresponding to the same potential source node at each SIS step. In
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that situation a worker may be assigned a set of potential source nodes for which it

must estimate the expected number of target realizations mi.

Regarding space complexity, sequential importance sampling requires a stored

graph in a form of adjacency list and n stored partial samples represented by 3 bit-

sets. The overall space complexity is O(max(L, n)), where L is number of links in the

network and n is number of samples.
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6. Analysis of epidemic source
detectors on the benchmark dataset

Before analysing performance of MAP-based epidemic source detectors it is impor-

tant to note that the inverse problem of finding the epidemic source is ill-posed [19]

while there might not exist a unique solution and the solution may change drastically

with small change in initial conditions. For this reason a high accuracy in terms of

determining the true source node cannot be expected.

The main goal in designing new epidemic source detectors is obtaining the results

in terms of accuracy as similar to Direct Monte Carlo as possible with better conver-

gence properties and shorter time of execution.

6.1. Benchmark dataset

Antulov-Fantulin et al. [7] provided a dataset of SIR realizations along with their es-

timations obtained with Direct Monte Carlo for 4 classes of detection problems based

on SIR parameters (p, q, T ): A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q =

0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5) and D = (p = 0.7, q = 0.7, T = 5). The

benchmark dataset contains 160 such realizations on the lattice of size 30× 30.

Different classes of SIR parameters are used in the dataset since each class yields

epidemics of different expected size. Moreover, the source nodes of epidemics on

the grid network for classes of SIR parameters A and B present lower detectability

than source nodes of epidemics on the grid network for classes of SIR parameters C

and D since they belong to low to medium and medium to high detectability zone,

respectively, as presented in Figure 7.1. Source nodes of epidemics governed by SIR

parameters in classes A and B thus produce lower accuracy on average.

The benchmark estimations of Antulov-Fantulin et al. [7] were obtained with Di-

rect Monte Carlo under convergence conditions 4.7 with c = 0.05. These estimations

provided along with the benchmark dataset can be used as a benchmark detector to
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measure similarity of other MAP based epidemic source detectors with Direct Monte

Carlo.

The similarity and performance of source detectors will be compared using accu-

racy, accuracy w.r.t. MAP estimation of Direct Monte Carlo benchmark detector and

distribution of required number of samples for which the estimations converge.

Direct Monte Carlo, Soft Margin and Sequential importance sampling based epi-

demic source detectors were implemented in C++ and parallelized using OpenMPI

[20] library. The complete source code is hosted on GitHub 1.

6.2. Correctness of Direct Monte Carlo implementa-

tion

Direct Monte Carlo implementation was ran on the benchmark dataset with conver-

gence conditions 4.7, c = 0.05. The correctness of Direct Monte Carlo implementation

is confirmed with coinciding accuracies of Direct Monte Carlo implementation and the

benchmark detector as presented in Figure 6.1.

The number of simulations required to fulfil convergence conditions was typically

in the interval n ∈ [106, 109] as presented in Figure 6.2 and reported by Antulov-

Fantulin et al. [7] for their Direct Monte Carlo implementation referred in the plot as

the benchmark detector.
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Figure 6.1: Accuracy of Direct Monte Carlo and Soft Margin implementations on the bench-

mark dataset with convergence conditions 4.7, c = 0.05. For Soft Margin fixed param-

eter a = 1/25 was used. Classes A, B, C, D correspond to classes of SIR parameters

A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q =

0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5).

1https://github.com/imih/cmplx
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Figure 6.2: Distribution of number of samples needed for detectors to converge on the bench-

mark dataset under convergence conditions 4.7, c = 0.05 for Direct Monte Carlo and Soft

Margin implementations and Direct Monte Carlo benchmark detector.

6.3. Correctness of Soft Margin implementation

To show correctness of the Soft Margin implementation the detector was ran on the

benchmark dataset. To make the error in approximation the same for all benchmark

instances fixed parameter a = 1
25

was used.

Since Soft Margin provides an approximation of Direct Monte Carlo method it is

expected that Soft Margin will yield results with accuracy (governed by parameter a)

not higher than the accuracy of Direct Monte Carlo, as presented in Figure 6.1.

The Soft Margin estimations follow the estimations of Direct Monte Carlo fairly

well, especially for classes of SIR parameters C and D on which the source node is

highly detectable, as presented in Figure 6.3. This is in accordance to results obtained

by Soft Margin implementation of Antulov-Fantulin et al. [7] referred in the plot as the

Soft Margin benchmark detector. The Soft Margin benchmark detector was reported

to be ran under the same convergence conditions as the implemented Soft Margin de-

tector.

Soft Margin requires fewer number of simulations for estimations to converge.

Converging number of simulations n was selected based on convergence conditions

4.7, c = 0.05 and they were tipically in the range n ∈ [104, 106] as presented in Figure
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Figure 6.3: MAP accuracy of Soft Margin detector of Antulov-Fantulin et al. [7], Direct Monte

Carlo and Soft Margin implementations. MAP accuracy is accuracy relative to MAP estimation

of the benchmark detector. The simulations were held with convergence conditions 4.7, c =

0.05 and fixed parameter a = 1/25 for Soft Margin. Classes A, B, C, D correspond to classes

of SIR parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p =

0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5).

6.2 and reported by Antulov-Fantulin et al. [7] for their Soft Margin implementation.

6.4. Sequential importance sampling epidemic source

detector

Sequential importance sampling was run under importance sampling distribution de-

fined by biased generator presented in Algorithm 8 with the following properties:

• parameter p is fixed in steps t < T and p = 1 in the final step t = T ,

• parameter q is fixed,

• at each step, only nodes that are in the given final realization may be infected,

• nodes that are infected may be recovered with probability q.

• the simulations are held under Direct Monte Carlo convergence conditions 4.7

with c = 0.05, starting from n = 104 samples.

To show correctness of Sequential importance sampling detector accuracy of es-

timations was compared with estimations of the benchmark detector. Accuracies for

benchmark detector and Sequential importance sampling detector follow similar pat-

tern overall and for each of the four classes of SIR parameters, as presented in Figure

6.4. For classes A and B they are low, and for classes C and D they are high.
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Compared to accuracy of the Soft Margin detector, Sequential importance sampling

outperforms the Soft Margin in terms of accuracy which is especially highlighted for

epidemics on low detectability SIR parameters of classes A and B. For classes C and

D that belong to medium to high detectability zone of parameters the source can also

be successfully estimated by the Soft Margin detector.
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Figure 6.4: Accuracy of Sequential importance sampling detector on the benchmark dataset

with convergence conditions 4.7, c = 0.05 for classes of SIR parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5).

To present the overall similarity of estimations of Sequential importance sampling

detector to the ones of the benchmark detector, MAP accuracy is used. This accu-

racy refers to the portion of MAP estimations that are equal to corresponding MAP

estimations of the benchmark detector provided in the benchmark dataset.

Antulov-Fantulin et al. [7] provided MAP accuracies for range of epidemic source

detectors out of which their Soft Margin implementation yields highest MAP accuracy

on the benchmark dataset.

Comparison of MAP accuracy for Soft Margin detector and SIS detector presented

in Figure 6.5 shows how Sequential importance sampling detector outperforms Soft

Margin in having higher MAP accuracy.

In other words, the estimations of Sequential importance sampling detector are

more similar to Direct Monte Carlo estimations than Soft Margin approximations are.

This makes sense since Soft Margin method is the approximation of Direct Monte

Carlo. Sequential importance sampling detector differs from Direct Monte Carlo only

by smaller estimator variance while still being a valid Monte Carlo method.
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Figure 6.5: MAP accuracy of Sequential importance sampling detector on the benchmark

dataset with convergence conditions 4.7, c = 0.05 for classes of SIR parameters A = (p =

0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D =

(p = 0.7, q = 0.7, T = 5).

Soft Margin,

a=0.03125 SIS detector

SIS with Simple

Random Sampling

SIS with

Residual Sampling

Soft Margin SIS,

a=0.03125

Soft Margin SIS,

a=0.125

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative error of detectors MAP probability estimation

w.r.t. benchmark MAP probability estimation

R
e
la

ti
ve

 e
rr

o
r

A

Soft Margin,

a=0.03125 SIS detector

SIS with Simple

Random Sampling

SIS with

Residual Sampling

Soft Margin SIS,

a=0.03125

Soft Margin SIS,

a=0.125

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative error of detectors MAP probability estimation

w.r.t. benchmark MAP probability estimation

R
e
la

ti
ve

 e
rr

o
r

B

Soft Margin,

a=0.03125 SIS detector

SIS with Simple

Random Sampling

SIS with

Residual Sampling

Soft Margin SIS,

a=0.03125

Soft Margin SIS,

a=0.125

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative error of detectors MAP probability estimation

w.r.t. benchmark MAP probability estimation

R
e
la

ti
ve

 e
rr

o
r

C

Soft Margin,

a=0.03125 SIS detector

SIS with Simple

Random Sampling

SIS with

Residual Sampling

Soft Margin SIS,

a=0.03125

Soft Margin SIS,

a=0.125

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative error of detectors MAP probability estimation

w.r.t. benchmark MAP probability estimation

R
e
la

ti
ve

 e
rr

o
r

D

Figure 6.6: Relative error of estimated MAP source probability w.r.t the estimated MAP prob-

ability of the benchmark detector for a range of Sequential importance sampling detectors

grouped by classes of SIR parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q =

0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5).
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The similarity between estimations obtained with Sequential importance sampling

and Direct Monte Carlo detector also presents itself as a low relative error of MAP

probability estimation w. r. t. benchmark Direct Monte Carlo estimated MAP proba-

bility across all classes of SIR parameters as presented in Figure 6.6. The relative error

of Sequential importance sampling is substantially smaller than the same error for Soft

Margin detector across all classes of SIR parameters.

One crucial metric of time complexity for Monte Carlo based techniques is the dis-

tribution of number of samples required for detector to converge under convergence

conditions 4.7, c = 0.05. The distribution of converging number of samples for es-

timations on the benchmark dataset reveals Sequential importance sampling detector

requires between 104 and 106 samples to converge on average for benchmark source

detection problems on the lattice network as presented in Figure 6.7, while Direct

Monte Carlo detector requires at least 106 simulations for estimations to converge on

the same dataset.
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Figure 6.7: Distribution of number of samples required for detectors to converge on the bench-

mark dataset under convergence conditions 4.7, c = 0.05 for a range of Sequential importance

sampling detectors on the benchmark dataset.

Let’s examine the form of distribution of required converging number of samples

for Direct Monte Carlo benchmark detector, Soft Margin and Sequential importance

sampling detectors in more detail. The distributions of required converging number

of samples for Direct Monte Carlo and Soft Margin take similar form. Introduction

of the Soft Margin approximation shifted left the distribution of converging number of
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samples for one order of size. Around 50% percent detection problem estimations on

the benchmark dataset still require 106 samples for estimation to converge.

On the other hand, using sequential importance sampling significantly alters the

distribution of required converging number of samples that now takes exponentially

decreasing form in which between 60% and 80% percent of the detection problems

required less than 105 samples to converge.

6.5. Sequential importance sampling detector with re-

sampling

To examine the impact of resampling techniques on Sequential importance sampling

detector, simple random sampling and residual sampling were incorporated. The re-

sampling schedule was based on coefficient of variation of the weights cv2 defined as

a measure of effectiveness of importance distribution in 5.5.

Resampling is invoked before the generation of new partial samples at t-th SIS

step as marked in Algorithm 10 if it holds vc2(wt−1) ≥ 2t where wt−1 is set of weights

corresponding to partial samples generated at the previous SIS step. The variation of

weights cv2 increases drastically after each SIS step on the benchmark dataset and

resampling limits the increase of variation, as presented in Figure 6.8.
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Figure 6.8: Distribution of squared variation of weights cv2 across discrete time steps T for

detection problems in the benchmark dataset estimated with Sequential importance sampling

detector without resampling and with simple random sampling using n = 105 samples.
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Incorporating resampling step to Sequential importance sampling detector does not

effect accuracy nor MAP accuracy on average for the benchmark dataset as presented

in Figure 6.9 and 6.10, respectively.
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Figure 6.9: Accuracy of Sequential importance sampling detectors on the benchmark dataset

with convergence conditions 4.7, c = 0.05 for classes of SIR parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5).
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Figure 6.10: MAP accuracy of Sequential importance sampling detectors on the benchmark

dataset with convergence conditions 4.7, c = 0.05 for classes of SIR parameters A = (p =

0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D =

(p = 0.7, q = 0.7, T = 5).

However, incorporating resampling technique introduces a small bias in the estima-

tor visible as a change in distribution of relative error of MAP probability as presented
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in Figure 6.6. The relative MAP probability error also reveals smaller estimator vari-

ance of residual sampling compared to simple random sampling on estimations for

classes of SIR parameters B and D with high recovery rate.

The impact of resampling on the source detector is also visible in higher ratio

of benchmark instances requiring smaller number of drawn samples to converge, as

presented in Figure 6.7.

It is interesting to observe accuracy in the group of detection problems converging

with the same number of samples. This group accuracy presented in Figure 6.11 shows

the SIS detector with incorporated resampling methods observes higher accuracy for

problems requiring less than 105 samples to converge compared to Soft Margin detec-

tor on corresponding group of detection problems even though this group of detection

problems for SIS detectors is bigger than the corresponding group of detection prob-

lems requiring the same number of simulations to converge with Soft Margin detector

as presented in Figure 6.7.
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Figure 6.11: Accuracy of range of Sequential importance sampling detectors on the benchmark

dataset calculated seperately for each group of benchmark detection problems corresponding

to the same number of samples their estimation required to converge under convergence con-

ditions 4.7, c = 0.05.

Additionally, with group accuracy minor difference in variance of estimators incor-

porating simple random sampling and residual sampling is confirmed.

6.6. Sequential importance sampling and Soft Margin

Adding Soft Margin approximation to Sequential importance sampling detector means

evaluating final samples with Gaussian weighting as presented in 5.10. We will observe

two detectors, both with fixed parameters a = 1
25

and a = 1
23

.

Even though Soft Margin SIS detector with a = 1
23

converges faster as presented
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in Figure 6.7, its overall accuracy is lower than the accuracy of other SIS detectors, as

presented in Figures 6.9, 6.10, 6.6, 6.11.

On the other hand, the Soft Margin SIS detector with a = 1
25

outperforms bench-

mark detector and other SIS detectors with higher accuracy as presented in Figure 6.9.

This detector also converges more quickly on the benchmark dataset as presented in

Figure 6.7.

Moreover, the group accuracy of detection problems requiring less than 105 sam-

ples to converge for Soft Margin SIS detector is higher than the same accuracy for

other SIS detectors and Soft Margin as presented in Figure 6.11.

6.7. Experimental execution time

For Soft Margin, Sequential importance sampling and Soft Margin SIS detector time

execution was measured and compared. Execution time was measured on 12 cpu cores

on Intel(R) Xeon CPU E5645 processor, 2.40GHz each. Detection was executed on

the benchmark dataset with n = 104 samples using 16 MPI processes. The results are

presented in Table 6.1

Soft Margin Sequential importance sampling Soft Margin SIS

Min 0.1170 s 2.460 s 2.457 s

Median 0.9556 s 4.154 s 4.247 s

Mean 91.1847 s 4.708 s 4.703 s

Max 666.6846 s 9.225 s 9.239 s

Table 6.1: Execution times in seconds for Soft Margin and Soft Margin SIS detectors on the

benchmark dataset estimated with n = 104 samples per potential source node.

Execution time of Soft Margin variates depending on expected epidemic size, while

Sequential importance sampling detectors sample epidemics only from the subset of

infected nodes in the given snapshot ~s∗ making variation in execution time smaller.

The execution times of Sequential importance sampling and Soft Margin SIS de-

tectors do not differ substantially.
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7. Detectability of patient zero

The source detectability D(~s∗) can be defined via Shannon entropy H(~s∗) of the esti-

mated source probability distribution P (Θ = θi|~S = ~s∗) normalized by entropy of the

uniform distribution as D(~s∗) = 1−H(~s∗) [7].

When entropy H(~s∗) of P (Θ = θi|~S = ~s∗) is close to 1, the detector has estimated

that all potential nodes have the same probability of being the source node of observed

epidemic, while low entropy H corresponds to the case where detector filtered out a

single node or a few nodes as potential epidemic sources.

Apart from entropical detectability, when talking about ability the node can be

detected by the source detector as an epidemic source, accuracy of the MAP estimator

and number of samples that are on average required for estimation to converge play an

important role.

Accuracy of estimation is crucial since it measures the overall successfulness of the

estimation for the particular epidemic environment – network topology, source node,

epidemic model, its parameters and, consequently, average epidemic size. At the same

time, the number of samples a detector requires for its estimations to converge gives

a picture of the detection complexity in terms of state space size for the particular

epidemic environment.

7.1. Detectability based on parameters of the SIR model

To show how detectability presents itself in the parametric space of SIR parameters p

and q, several simulations were ran using Soft Margin SIS detector with fixed a = 1
25

.

The Soft Margin SIS detector was chosen since it produced the highest accuracy on

the benchmark dataset as presented in Figure 6.9.

For each set of parameters (p, q) and various 4-connected lattice networks of dif-

ferent size, 50 epidemic simulations were conducted for T = 5 time steps starting

from the central node in the lattice network. All epidemic simulations of size 1 were

excluded. Soft Margin SIS detector was ran on each epidemic simulation with con-
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verging conditions 4.7, c = 0.05 and number of samples in range n ∈ [104, 106].

Influence of parameters p and q on entropical detectability for the SIR model is pre-

sented in Figure 7.1. For simulations on lattice of size 30×30 we observe the existence

of different detectability regimes (or entropy regions), as reported by Antulov-Fantulin

et al. [7]. Three entropy regions are observed: low detectability-high entropy region

(p < 0.2), intermediate detectability - intermediate entropy region (0.2 < p < 0.7)

and high detectability-low entropy region (p > 0.7). The entropy regions are similarly

distributed for different values of q ∈ {0, 0.5, 1}.
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Figure 7.1: Violin plots of estimated entropy distribution for source probability distributions on

4-connected lattice 30×30 estimated with Soft Margin SIS method with 104−106 samples and

fixed a = 1
25

under SIR model with different parameters p in range 0.1 − 0.9, q = {0, 0.5, 1}
and T = 5.
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Accuracy of source detections, as presented in Figure 7.2, follows the behaviour of

entropical detectability – the accuracy grows while entropy gets lower. Additionally,

accuracy does not differ significantly for the same value of parameter p across different

values of parameter q ∈ {0, 0.5, 1}.
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Figure 7.2: Accuracy of source MAP estimation on 4-connected lattice 30×30 estimated with

Soft Margin SIS method with 104 − 106 samples and fixed a = 1
25

under SIR model with

different parameters p in range 0.1− 0.9, q = {0, 0.5, 1} and T = 5.

While observing the distribution of samples for which estimations converge under

convergence conditions 4.7, c = 0.05 one can also detect the same three detectabil-

ity regions, as presented in Figure 7.3. The region requiring the most samples is the

intermediate entropy region while the high entropy and low entropy regions require

minimal number of samples for estimations to converge. Across values of recovery

parameter q, the estimations on intermediate entropy region and median value of q

require the most samples to converge.
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Figure 7.3: Box plots of converging samples distribution on 4-connected lattice 30 × 30 es-

timated with Soft Margin SIS method with 104 − 106 samples and fixed a = 1
25

under SIR

model with different parameters p in range 0.1− 0.9, q = {0, 0.5, 1} and T = 5.

It is interesting to see how detectability gets restricted in a regime where network

topology restricts the epidemic spreading. By simulating epidemic on smaller lattices,

the epidemic spreading gets restricted by the network size for smaller lattices and for

higher value of infection parameter p, as presented in Figure 7.4.

For simulations in which the network size restricts epidemic spreading, the entropy

is high as the realizations from different sources are almost identical. As the lattice

grows and epidemic is less restricted by the network size, entropy distribution takes

expected mean-decreasing form, as presented in Figure 7.5.

On the other hand, the accuracy is lower for epidemic-restricting network sizes and

parameters, as presented in Figure 7.6. The biggest impact on accuracy reveals itself

in the intermediate entropy region. The lower accuracy for the lower values of p – the

ones for which the epidemic is still not restricted by the lattice size – can be explained

by increasing symmetry of epidemic snapshots for smaller lattices, i.e. there tends to

be serveral potential source nodes with the same MAP probability.
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Figure 7.4: Box plots of size of epidemics simulated on 4-connected lattices of different sizes

under SIR model with different parameters p in range 0.1− 0.9, fixed q = 0.5 and T = 5.
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Figure 7.5: Violin plots of estimated entropy distribution for source probability distributions

on 4-connected lattices of different sizes estimated with Soft Margin SIS method with 104−106

samples and fixed a = 1
25

under SIR model with different parameters p in range 0.1−0.9, fixed

q = 0.5 and T = 5.
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Figure 7.6: Accuracy of source MAP estimation on 4-connected lattice of different sizes es-

timated with Soft Margin SIS method with 104 − 106 samples and fixed a = 1
25

under SIR

model with different parameters p in range 0.1− 0.9, fixed q = 0.5 and T = 5.
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Figure 7.7: Box plots of converging samples distribution on 4-connected lattice of different

sizes estimated with Soft Margin SIS method with 104 − 106 samples and fixed a = 1
25

under

SIR model with different parameters p in range 0.1− 0.9, fixed q = 0.5 and T = 5. 51



7.2. Detectability based on parameters of the ISS model

To show how detectability presents itself in the parametric space of ISS parameters

a and b several simulations were ran using Soft Margin detector with adaptive Soft

Margin parameter a chosen from { 1
23
, 1

24
, . . . , 1

29
}.

For each set of ISS parameter pairs (a, b) 50 simulations of ISS rumour spreading

were conducted for T = 5 time steps starting from the central node in 4−connected lat-

tice network of 30× 30 nodes. All simulations of size 1 were excluded from analysis.

Soft Margin detector was ran on each rumour spreading simulation with converging

conditions 4.7, c = 0.05. Estimations were conducted based on number of ISS simu-

lations in range n ∈ [104, 106].
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Figure 7.8: Violin plots of estimated entropy distribution for source probability distributions

on 4-connected lattice 30× 30 estimated with Soft Margin method with 104− 106 simulations

and adaptive a chosen from {1/23, 1/24, . . . , 1/29} under ISS model with different parameters

a in range 0.1− 0.9, b = {0, 0, 5, 1} and T = 5.

Entropical detectability for the rumour spreading ISS model presented in Figure

7.8 shows behaviour similar to entropical detectability under epidemic SIR model pre-
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sented in Figure 7.1. In the model with no rumour decay where b = 0, ISS model is

equivalent to SIR model, as are their entropy distributions. The 3 entropy-detectability

regions distinguishable in the entropy distribution over parameter p for the SIR model

can be distinguished in the entropy distribution over parameter a for the ISS model.

However, as the value of parameter b in the ISS model compared to the same value

of parameter q in the SIR model represents more aggressive form of recovery, the low

detectability - high entropy region grows more rapidly with higher value of b, taking

over the range of parameters a < 0.4 and a < 0.5 for b = 0.5 and b = 1.0, respectively.

On the other hand, accuracy of source detection for the ISS model remains stable

for the same value of parameter a and different values of parameter b as presented

in Figure 7.9, similarly to the same accuracy for source detection under SIR model

presented in Figure 7.2. For the same value of parameter b, accuracy grows with higher

value of parameter a.
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Figure 7.9: Accuracy of source MAP estimation on 4-connected lattice 30 × 30 esti-

mated with Soft Margin method with 104 − 106 simulations and adaptive a chosen from

{1/23, 1/24, . . . , 1/29} under ISS model with different parameters a in range 0.1 − 0.9, b =

{0, 0.5, 1} and T = 5.
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7.3. Detectability of patient zero based on its position

in the network

To analyse how detectability changes across node features of the source node we will

examine patient zero problem on two different network topologies: Erdős-Rényi and

Barabási-Albert graphs. These network topologies differ in distribution of centrality

measures of its nodes so epidemic spreads differently across each network.

Two graph datasets were generated for this purpose. The Erdős-Rényi dataset con-

sists of 50 graphs withN = 100 nodes generated with p = 0.01. This probability is the

threshold of emergence of the giant component for a graph with N = 100 nodes and

the dataset contains only connected graphs. The second dataset consists of 50 graphs

withN = 100 nodes generated as Barabási-Albert graphs withm = 2 attaching edges.

On the generated network impact of centrality measures of the source node on

source detectability will be analysed. Centrality measures include degree, closeness,

betweenness, eigenvector centrality and coreness.

7.3.1. Erdős-Rényi graph

Before analysing how detectability changes for source nodes with different topological

properties, let’s examine the distribution of these properties on generated Erdős-Rényi

N = 100, p = 0.01 graphs.

In Table 7.1 summary of statistics for each centrality measure is presented. The dis-

tribution of frequencies for each measure is presented in Figure 7.10. Degree distribu-

tion takes the form of binomial distribution as expected. The centralities are positively

correlated.

In generated Erdős-Rényi graphs, expected degree and betweenness of a node are

relatively small compared to the network size.

Degree Closeness Betweenness Eigenvector centrality Coreness
Min 1 0.1713 0.00 0.001575 1

Median 5 0.3246 83.33 0.334041 3

Mean 4.657 0.3222 106.14 0.367168 2.831

Max 14 0.4304 698.57 1.000000 4

Table 7.1: Summary of cumulative statistics of distributions for degree, closeness, between-

ness, eigenvector centrality and coreness of the nodes in 50 generated Erdős-Rényi connected

graphs with p = 0.01 and N = 100 nodes.
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Figure 7.10: Frequencies of degree, closeness, betweenness, eigenvector and coreness central-

ities on 50 generated Erdős-Rényi graphs with N = 100 and p = 0.01.

Degree centrality

The epidemics simulated on Erdős-Rényi graphs infect more nodes when started from

a node with higher degree as presented in Figure 7.11. Epidemics simulated with high

infection rate p = 0.7 in classes of SIR parameters C and D were highly restricted by

the network size and we can already predict that will have impact on detectability. As

expected, high recovery rate q = 0.7 in class B limits the size of epidemic compared

to epidemics with SIR parameters in class A and low recovery rate q = 0.3.
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Figure 7.11: Box plots of size of epidemics simulated on on Erdős-Rényi connected graphs

with p = 0.01 and N = 100 nodes under SIR model with parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5) grouped by degree of the source node.

The impact of restricting network size for parameter classes C and D is presented

in entropy distributions with high expectation as presented in Figure 7.12. For classes

of parameters A and B, the entropy is also high and difference in degree of the source

node does not significantly alter its expected value. Additionally, the epidemics sim-

ulated with higher recovery rate (classes B and D) exibit higher expected entropy

compared to their low recovery counterparts (classes A and C, respectively).

The source detection accuracy is lower for source nodes that have higher degree, as

presented Figure 7.13. The degree of the source node is more restrictive for accuracy

on epidemics simulated from classes of parameters C and D.
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Figure 7.12: Violin plots of estimated entropy distribution for estimated source probability

distribution on Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated

with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model

with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p =

0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by degree of the source node.
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Figure 7.13: Source detection accuracy on Erdős-Rényi connected graphs with p = 0.01 and

N = 100 nodes estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed

a = 1
25

under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q =

0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by

degree of the source node. 57



The converging number of samples required for estimations to converge on Erdős-

Rényi graphs is on average in range n ∈ [4 ·104, 4 ·105]. For classes of SIR parameters

A and B the expected number of simulations does not differ significantly for different

degree of the source node, as presented in Figure 7.14. For classes of SIR parameters

C and D, required number of samples is in range n ∈ [104, 105]. For largest values of

degree of the source node, the required number of converging samples for classes of

parameters C and D is minimal.
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Figure 7.14: Box plots of converging samples distribution for source MAP estimations on

Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated with Soft Margin

SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model with parameters

A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T =

5), D = (p = 0.7, q = 0.7, T = 5) grouped by degree of the source node.

Closeness centrality

Closeness centrality corresponds to how close a given node is to any other node, as

defined in 2.1. For Erdős-Rényi graph, the nodes with higher closeness usually have a

higher degree compared to the nodes of lower closeness so the results for degree and

closeness will be similar.

Size of simulated epidemics grows with higher closeness, as presented in Figure
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Figure 7.15: Box plots of size of epidemics simulated on on Erdős-Rényi connected graphs

with p = 0.01 and N = 100 nodes under SIR model with parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5) grouped by closeness of the source node.

Entropy distribution over different values of closeness of the source node stays

constant and high in expectation for classes of SIR parameters A and B. For classes

of SIR parameters C i D that correspond to high detectability - low entropy region

for detection on the grid, entropy is low for low values of closeness and grows higher

when closeness is high, as presented in Figure 7.16.

Accuracy is also high for lower values of closeness, as presented in Figure 7.17.

Note the closeness in range [0.15, 0.3) mostly corresponds to nodes with degree equal

to 1 and 2 (Figure 7.10) on which we’ve already seen high accuracy of source detection

(Figure 7.13). Accuracy is more restricted by closeness for classes of SIR parameters

C and D.
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Figure 7.16: Violin plots of estimated entropy distribution for estimated source probability

distribution on Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated

with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model

with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p =

0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by closeness of the source

node.
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Figure 7.18: Box plots of converging samples distribution for source MAP estimations on

Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated with Soft Margin

SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model with parameters

A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T =

5), D = (p = 0.7, q = 0.7, T = 5) grouped by closeness of the source node.

Betweenness centrality

Betweenness centrality describes how well situated a vertex is in terms of the paths

it lies on, as defined in 2.2. Betweenness positively correlates with degree and close-

ness for Erdős-Rényi graph, so detectability results grouped by betweenness of the

source node are similar to the ones for degree and closeness. Entropy distribution, ac-

curacy, and distribution of converging number of samples grouped by betweenness of

the source node are presented in Figure 7.19, 7.20 and 7.21, respectively.

Detection accuracy is lower for source nodes with higher betweenness and it gets

more restrictive for epidemics based on SIR parameters in classes C and D.

61



[0, 100] (100, 200] (200, 300] (300, 400] (400, 700]

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

Entropy of source node probability distribution for SIR model

grouped by betweenness of the source node

Betweenness

E
n

tr
o

p
y

A

[0, 100] (100, 200] (200, 300] (300, 400] (400, 700]

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

Entropy of source node probability distribution for SIR model

grouped by betweenness of the source node

Betweenness

E
n

tr
o

p
y

B

[0, 100] (100, 200] (200, 300] (300, 400] (400, 700]

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

Entropy of source node probability distribution for SIR model

grouped by betweenness of the source node

Betweenness

E
n

tr
o

p
y

C

[0, 100] (100, 200] (200, 300] (300, 400] (400, 700]

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

Entropy of source node probability distribution for SIR model

grouped by betweenness of the source node

Betweenness

E
n

tr
o

p
y

D

Figure 7.19: Violin plots of estimated entropy distribution for estimated source probability

distribution on Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated

with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model

with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p =

0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by betwenness of the source

node.
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Figure 7.20: Source detection accuracy on Erdős-Rényi connected graphs with p = 0.01 and

N = 100 nodes estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed

a = 1
25

under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q =

0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by

betweenness of the source node.
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Figure 7.21: Box plots of converging samples distribution for source MAP estimations on

Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated with Soft Margin

SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model with parameters

A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T =

5), D = (p = 0.7, q = 0.7, T = 5) grouped by betweenness of the source node.

Eigenvector centrality

Eigenvector centrality describes centrality of the source node in terms of node central-

ity of its neighbours, as defined in 2.3. Eigenvector centrality positively correlates with

degree, closeness and betweenness for Erdős-Rényi graph as presented in Figure 7.10,

so detectability results grouped by eigenvector centrality of the source node are similar

to the ones for degree, closeness and betweenness. Entropy distribution, accuracy, and

distribution of converging number of samples grouped by eigenvector centrality of the

source node are presented in Figure 7.22, 7.23 and 7.24, respectively.
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Figure 7.22: Violin plots of estimated entropy distribution for estimated source probability

distribution on Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated

with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model

with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p =

0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by eigenvector centrality of the

source node.
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Figure 7.23: Source detection accuracy on Erdős-Rényi connected graphs with p = 0.01 and

N = 100 nodes estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed

a = 1
25

under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q =

0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by

eigenvector centrality of the source node. 64
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Figure 7.24: Box plots of converging samples distribution for source MAP estimations on

Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated with Soft Margin

SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model with parameters

A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T =

5), D = (p = 0.7, q = 0.7, T = 5) grouped by eigenvector centrality of the source node.

Coreness

Coreness of the source node also positively correlates with degree, closenes, between-

ness and eigenvector centrality for Erdős-Rényi graph as presented in Figure 7.10, so

detectability results grouped by coreness of the source node are similar to the ones for

other measures. Entropy distribution, accuracy, and distribution of converging num-

ber of samples grouped by eigenvector centrality of the source node are presented in

Figure 7.25, 7.26 and 7.27, respectively.
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Figure 7.25: Violin plots of estimated entropy distribution for estimated source probability

distribution on Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated

with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model

with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p =

0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by coreness of the source node.
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Figure 7.26: Source detection accuracy on Erdős-Rényi connected graphs with p = 0.01 and

N = 100 nodes estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed

a = 1
25

under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q =

0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by

coreness of the source node. 66
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Figure 7.27: Box plots of converging samples distribution for source MAP estimations on

Erdős-Rényi connected graphs with p = 0.01 and N = 100 nodes estimated with Soft Margin

SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model with parameters

A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T =

5), D = (p = 0.7, q = 0.7, T = 5) grouped by coreness of the source node.

7.3.2. Barabási-Albert graph

Barabási-Albert graph is generated using preferential attachment property. We will

use a set of Barabási-Albert graphs wtih n = 100 nodes that were evolved with m = 2

attaching edges for each added node. For these graphs coreness is constant and equal

to m so it will be omitted from analysis.

The summary of statistics for centrality measures on generated 2− Barabási-Albert

graphs is presented in Table 7.2. Apart from constant coreness and compared to distri-

bution of the same measures on Erdős-Rényi graphs of the same size, degree, closeness

and betweenness can take higher values.
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Degree Closeness Betweenness Eigenvector centrality Coreness
Min 2 0.2421 0 0.003098 2

Median 2 0.3808 5.924 0.102812 2

Mean 3.96 0.3823 82.952 0.116188 2

Max 108 0.8250 4517.507 1.000000 2

Table 7.2: Summary of cummulative statistics of distributions for degree, closeness, between-

ness, eigenvector centrality and coreness of the nodes in 50 generated Barabási-Albert graphs

with m = 2 and N = 100 nodes.
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Figure 7.28: Distribution of degree, closeness, betweenness and eigenvector centrality in 2-

Barabási-Albert dataset.

Additionally, degree distribution is scale-free, as expected, while distributions of

other centrality measures take similar form as presented in Figure 7.28. Ranges of

values for each centrality measure upon which the detectability is analysed has been

chosen according to these distributions. Between each pair of centrality measures the

correlation is mostly positive.
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Degree centrality

Epidemic simulations on 2- Barabási-Albert graphs are restricted by the network size

and are expected to infect all nodes in the network for classes of SIR parameters A, C,

D as presented in Figure 7.29. The structure of 2- Barabási-Albert graphs, precisely

their short average path length, help in epidemic spreading.

For SIR parameters B = (p = 0.3, q = 0.3) expected size of epidemic positively

correlates with degree of the source node. The epidemics simulated with SIR param-

eters with lower recovery rate (classes A and C) have higher expected epidemic size

compared to the corresponding classes with higher recovery rate (classes B and D,

respectively).
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Figure 7.29: Box plots of size of epidemics simulated on 2-Barabási-Albert graphs with N =

100 nodes under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p =

0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5)

grouped by degree of the source node.

The entropy distributions, on 2-Barabási-Albert graphs take high values for all SIR

parameter classes, no matter the degree of the source node, as presented in Figure 7.31.

Moreover, for 2-Barabási-Albert graphs detection accuracy is generally low. Ex-

cept for network size restricting epidemics with parameter class C, the accuracy is

highest for detection for network non-restricting epidemics with SIR parameter class

B and low degree source nodes, as presented in Figure 7.30.
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The emergence of detectability for high degrees of the source node for source de-

tection problems with SIR parameters in class C gives a hint the local network struc-

ture plays a role in detectability since usually the high degree nodes are the ones at the

core of these locally connected groups. This property isn’t noticeable in Erdős-Rényi

graphs since they do note have with such local structure.
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Figure 7.30: Source detection accuracy on 2-Barabási-Albert graphs with N = 100 nodes

estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under

SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T =

5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by degree of the

source node.
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Figure 7.31: Violin plots of estimated entropy distribution for estimated source probability

distribution on 2-Barabási-Albert graphs with N = 100 nodes estimated with Soft Margin

SIS detector with 104 − 106 simulations and fixed a = 1
25

under SIR model with parameters

A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T =

5), D = (p = 0.7, q = 0.7, T = 5) grouped by degree of the source node.

For 2-Barabási-Albert graphs converging number of samples negatively correlates

with degree of the source node, as presented for classes of parameters A and D in

Figure 7.32. Additionally, epidemics with higher recovery rate require more samples

to converge compared to corresponding low recovery rate class pairs.

The expected size of required samples is in range [4 · 104, 106] for classes of SIR

parameters A and B. For SIR parameter classes C and D, the converging number

of samples is usually lower, as presented in Figure 7.32. It is worth mentioning the

number of samples was upper bounded by 106 during detection process and it is ex-

pected even more samples are actually required to have higher detection accuracy for

2-Barabási-Albert graphs with classes of SIR parameters A and B.
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Figure 7.32: Box plots of converging samples distribution for source MAP estimations on

2-Barabási-Albert graphs with N = 100 nodes estimated with Soft Margin SIS detector with

104 − 106 simulations and fixed a = 1
25

under SIR model with parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5) grouped by degree of the source node.

Closeness centrality

Closeness corresponds to how close a given node is to any other node in the network,

as defined in 2.1.

For classes of SIR parameters A and B, expected epidemic size positively cor-

relates with closeness and the higher recovery rate limits the epidemic coverage, as

presented in Figure 7.33.

Except accuracy on network size restricted simulations with SIR parameter class

C, accuracy is highest for SIR parameter class A and B (p = 0.3) when closeness of

source node is low, as presented in Figure 7.34. The high accuracy for high values of

closeness and SIR parameters in class C can be explained by local network structure.

Finally, it is interesting to see how the required converging number of samples for

source estimation on SIR epidemic negatively correlates with higher closeness of the

source nodes, as presented in Figure 7.35.
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Figure 7.33: Box plots of size of epidemics simulated on 2-Barabási-Albert graphs with N =

100 nodes under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p =

0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5)

grouped by closeness of the source node.
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Figure 7.34: Source detection accuracy on 2-Barabási-Albert graphs with N = 100 nodes

estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under

SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T =

5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by closeness of

the source node.
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Figure 7.35: Box plots of converging samples distribution for source MAP estimations on

2-Barabási-Albert graphs with N = 100 nodes estimated with Soft Margin SIS detector with

104 − 106 simulations and fixed a = 1
25

under SIR model with parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5) grouped by closeness of the source node.

Betweenness centrality

Betweenness centrality describes how well situated a vertex is in terms of the paths it

lies on as defined in 2.2.

Similarly to closeness, epidemic size grouped by betweenness of the source node

shows the epidemics of smaller size are expected to start from the source node with

lower betweenness, at least for SIR parameter classes A and B where epidemic is still

localized within network size, as presented in Figure 7.36.

For accuracy, on the other hand, betweenness shows to be the centrality measure

that separates the detections so the ones more probable to produce correct results have

source node of high betweenness, at least for SIR parameters in class C, as presented

in Figure 7.37. This can be explain by local network structure since the centres of local

communities usually have high centrality.

Similarly to closeness, the converging number of samples for source detection is

negatively correlated with betweenness, as presented in Figure 7.38. Source detection

for parameter classes with high recovery rate require more samples to converge than

their low recovery counterparts.
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Figure 7.36: Box plots of size of epidemics simulated on 2-Barabási-Albert graphs with N =

100 nodes under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p =

0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5)

grouped by betweenness of the source node.
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Figure 7.37: Source detection accuracy on 2-Barabási-Albert graphs with N = 100 nodes

estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under

SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T =

5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by betweenness

of the source node.
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Figure 7.38: Box plots of converging samples distribution for source MAP estimations on

2-Barabási-Albert graphs with N = 100 nodes estimated with Soft Margin SIS detector with

104 − 106 simulations and fixed a = 1
25

under SIR model with parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5) grouped by betweenness of the source node.

Eigenvector centrality

Eigenvector centrality describes centrality of the source node in terms of node cen-

trality of its neighbours, as defined in 2.3. Epidemic source detectability grouped by

eigenvector centrality shows similar results to closeness and betweenness for epidemic

coverage, accuracy and converging number of samples, as presented in Figure 7.39,

7.40 and 7.41, respectively since the measures correlate positively.
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Figure 7.39: Box plots of size of epidemics simulated on 2-Barabási-Albert graphs with N =

100 nodes under SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p =

0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5)

grouped by eigenvector centrality of the source node.
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Figure 7.40: Source detection accuracy on 2-Barabási-Albert graphs with N = 100 nodes

estimated with Soft Margin SIS detector with 104 − 106 simulations and fixed a = 1
25

under

SIR model with parameters A = (p = 0.3, q = 0.3, T = 5), B = (p = 0.3, q = 0.7, T =

5), C = (p = 0.7, q = 0.3, T = 5), D = (p = 0.7, q = 0.7, T = 5) grouped by eigenvector

centrality of the source node.
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Figure 7.41: Box plots of converging samples distribution for source MAP estimations on

2-Barabási-Albert graphs with N = 100 nodes estimated with Soft Margin SIS detector with

104 − 106 simulations and fixed a = 1
25

under SIR model with parameters A = (p = 0.3, q =

0.3, T = 5), B = (p = 0.3, q = 0.7, T = 5), C = (p = 0.7, q = 0.3, T = 5), D = (p =

0.7, q = 0.7, T = 5) grouped by eigenvector centrality of the source node.
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8. Conclusion

Detectability of patient zero is source detection problem based on partial history of

epidemic spreading and underlying network structure. Assuming the epidemic started

from a single source and based on the known infected nodes up to fixed time threshold

simulated with discrete SIR epidemic spreading model, it is possible to construct MAP

classifier based on estimation of epidemic source distribution. These Direct Monte

Carlo and Soft Margin methods of Antulov-Fantulin et al. [7] were implemented and

results on provided benchmark dataset were reproduced for SIR and ISS models.

Importance sampling method and partial generation of epidemic spreading samples

with Sequential importance sampling algorithm provide optimization of Monte Carlo

methods in terms of higher accuracy and faster convergence rate while omitting the

necessity of direct simulation of epidemic spreading.

Source detection detectability in terms of entropical detectability and accuracy is

presented to be higher for higher values of SIR parameter p and ISS parameter a for

rumour spreading model on the grid network. This directly correlates with epidemic

size and unique position of each node in the epidemic which pushes towards a unique

solution of the ill-posed problem of source detection and, consequently, lower entropy

and better accuracy of estimated source probability distribution.

When analysing detectability on non-grid random Erdős-Rényi graph with N =

100 nodes and p = 0.01, the role of SIR parameters p and q in source detectability

intensifies. The expected entropy of source distribution for detection on epidemic with

higher recovery rate is higher. With high recovery rate there is more ways to obtain the

snapshot upon which we base the detection in terms of what nodes got infected and

what nodes got recovered. Additionally, the probability of obtaining our snapshot is

smaller than probability of obtaining the same snapshot without recovery and the state

space stays at most of the size of state space with corresponding epidemic parameters

but without recovery. This means more nodes will have similar source probability

distribution and expected entropy will be higher.

Detectability is higher for lower values of centrality in Erdős-Rényi graph since the
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source nodes with lower values of centrality produce smaller epidemics. Accuracy of

source detector on Erdős-Rényi graph is negatively correlated with centrality metrics

accordingly.

Additionally, SIR parameter pairs that on the grid network obtain low detectability

(the ones with low infection rate), produce on Erdős-Rényi graph accuracy comparable

to accuracy of SIR parameter classes (the ones with high infection rate) that have high

detectability on the grid network too. This can be explained by the random structure

of Erdős-Rényi graph where each node is by default structurally more unique than

the node in the grid network and therefore more distinguishable, even within small

epidemics.

The source node detectability is more restricted by centrality metrics of the source

node for the epidemics with high infection rate.

Detectability based on centrality measures on 2-Barabási-Albert graphs with N =

100 nodes is presented to be higher for the source node having lower centrality in

terms of degree, closeness, betweenness and eigenvector centrality for both graph

types. The detectability is similarly positively correlated with centrality measures of

the source node. The presence of local network structure in Barabási-Albert graphs

and importance of nodes of high centrality in local communities plays important role

in detectability of source nodes with high centrality. Namely, the detectability of these

nodes as the source nodes of epidemic is high. The detectability of nodes with low

centrality remains high too, similarly to Erdős-Rényi graph.
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Odredivost nultog pacijenta ovisno o njegovoj poziciji u mreži

Sažetak

Odredivost nultog pacijenta je problem traženja izvora zaraze na temelju djelomične

povijesti epidemiološke dinamike i mrežne strukture. Uz pretpostavku da je epidemija

krenula iz jednog čvora i na temelju cjelokupnog znanja o mreži te poznavanja zaraženih

čvorova do fiksnog vremenskog trenutka u diskretnom SIR modelu širenja zaraze,

moguće je konstruktirati MAP klasifikator na temelju estimacije distribucije vjero-

jatnosti izvora zaraze pomoću Monte Carlo metoda, a koje se dodatno optimiziraju

uzorkovanjem po važnosti.

Pokazano je da detektabilnost kao entropijska detekatiblnost i točnost detekcije

ovise o vrijednostima parametara SIR modela za širenje epidemije, a slično je pokazano

i za detekciju izvora glasine prema ISS modelu širenja glasine. Za SIR model pokazano

je kako je lakše otkriti izvor zaraze ako početni čvor ima manju centralnost.

Ključne riječi: kompleksne mreže, odredivost nultog pacijenta, širenje epidemije,

širenje glasina, Monte Carlo metode, Sekvencijalni Monte Carlo



Detectability of Patient Zero Depending on its Position in the Network

Abstract

Detectability of patient zero is source detection problem based on partial history of

epidemic spreading and underlying network structure. Assuming the epidemic started

from a single source and based on the known infected nodes up to fixed time thresh-

old simulated with discrete SIR epidemic spreading model, it is possible to construct

MAP classifier based on estimation of epidemic source distribution using Monte Carlo

methods optimised with importance sampling.

It is presented how detectability in terms of entropical detectability and accuracy

depends on parameters of the SIR model for epidemic source detection, as well as how

parameters of ISS model for rumour spreading govern the rumour source detection.

For the SIR model it is presented the source node with lower centrality is expected to

be more detectable.

Keywords: complex networks, detectability of patient zero, epidemic spreading, ru-

mour spreading, Monte Carlo methods, Sequential Monte Carlo


