
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS ASSIGNMENT Nr. 1569

Assembly Improvement Using
Deep Learning Methods

Antonio Jurić

Zagreb, September 2018.

i

ii

Thanks to my mentor Mile Šikić for

full support during the studies under his mentorship and specially during the work on

master thesis. Thanks also to Krešimir Križanović and Robert Vaser.

Many thanks to the parents who were guiding me well during my life.

Also, thanks to my wife Ivana and the soon coming baby.

Finally, thanks and glory to the God Almighty, Creator of the universe, whose beau-

ties we have the privilege of exploring.

Zahvaljujem mojem mentoru Mili Šikiću za punu podršku tijekom studiranja pod

njegovim mentorstvom i posebno tijekom izrade diplomskog rada. Zahvaljujem i Krešimiru

Križanoviću te Robertu Vaseru.

Posebno hvala i roditeljima koji su me dobro usmjeravali tijekom života.

Hvala i mojoj ženi Ivani te bebi koja uskoro dolazi.

Konačno, hvala i slava Bogu Svemogućemu, svemira Stvoritelju, čije krasote imamo

privilegiju istraživati.

iii

CONTENTS

1. Introduction 1

2. Related work 2

3. Environment 4

4. Methods 5
4.1. Workflows . 5

4.1.1. Dataset workflow . 5

4.1.2. Training workflow . 8

4.1.3. Inference workflow . 9

4.2. Pileups creation . 10

4.2.1. Overlap with no indels . 11

4.2.2. Overlap with indels . 12

4.2.3. MSA supported overlap with indels 13

4.3. Models . 13

4.3.1. Model 7 . 14

4.3.2. Model 11 . 15

4.3.3. Model 23 . 15

4.3.4. Model 24 . 16

4.3.5. Input and output shape of models 16

5. Results 19
5.1. Polishing results . 19

5.1.1. All bacteria dataset - PacificBiosciences data 20

5.1.2. S. cerevisiae dataset - Oxford Nanopore MinION data 20

5.1.3. Fusobacterium dataset - Oxford Nanopore MinION data . . . 22

5.2. Datasets visualization . 24

5.3. Visualization of samples . 25

iv

5.4. Ablation study . 26

5.4.1. Class weights . 26

5.4.2. Finetuning on smaller dataset 26

5.4.3. Different pileups . 27

5.4.4. Manual model arhitecture search 27

5.4.5. Weight decay . 28

5.5. Hyperparameter tuning . 28

6. Future work 33
6.1. Datasets . 33

6.2. Class weights and sample weights 33

6.3. Edit distance measure . 34

6.4. Inference - output size . 34

6.5. Inference postprocessing . 35

6.6. Multiple output branches or specialized models 35

6.7. Homopolymers . 35

6.8. Possible incompatibility of optimization processes 37

7. Conclusion 38

Bibliography 39

v

1. Introduction

Third generation sequencing technologies create reads which are much longer than

those reads created with older technologies. One advantage of longer reads is that

the abundant information helps to remove the uncertainty of repeating regions in the

assembly. But, this long length comes at cost: longer reads have much higher error

rates. When using those reads for genome assembling, one of the main problems is

capturing those errors and correcting them. Even though there are some assemblers

which are quite robust to such errors, there is still room to improve the correctness of

the assemblies. This work tries to apply deep learning techniques in order to improve

the assemblies. Code can be found at https://github.com/ajuric/consensus-net.

Classical pipeline for creating an assembly consists of three phases: overlap, layout

and consensus phase. In the overlap phase, reads are aligned with each other. Those

alignments are then used in layout phase to construct a graph structure which is then

exploited to create an assembly genome. In last phase, consensus phase, assembled

genome is "polished" - we traverse all genome positions and see if the base at given

position matches the bases in reads aligned to that position. The most simple method

used for consensus is the majority vote - the base in the genome should be the one

which is in the most reads aligned to that position. Described pipeline is often refer-

enced as Overlap-Alignment-Consensus (OLC) paradigm (Myers E.W. et al. (2000)).

Existing classical consensus tools use handcrafted rules for calculating the con-

sensus. The risk with this method is that it is quite possible that not all cases will be

covered with the handcrafted rules. Instead, this work will let the deep convolutional

neural network to learn those rules by itself.

Second chapter represents the related work in the field - both using the classical and

deep learning methods. Environment used for running the experiments is described in

the third chapter. Fourth chapter describes various workflows, pileup creation versions,

models and data shapes. Results along with datasets analysis and ablation study are in

the fifth chapter. Future ideas and possible work are represented in the sixth chapter.

Finally, conclusion in the seventh chapter concludes the results of this work.

1

2. Related work

Existing tools for consensus phase are based on statistics, classical algorithms and/or

machine learning. Some of the popular tools for consensus are Nanopolish, Quiver

(and Arrow), Racon, and on of the recent tools, Medaka.

Nanopolish (Loman et al. (2015)) tool has multiple purposes, one of which is a

calculating an improved consensus. It can also detect base modifications, call SNPs

and indels with respect to a reference genome and more. It is developed for Oxford

Nanopore MinION data. The method used in Nanopolish is the Profile Hidden Markov

Model. At the time, method improved assembled genome of E. Coli from 98.4% to

99.4% nucleotide identity.

Quiver and Arrow (PacificBiosciences (2018)) are methods developed by Paci-

ficBiosciences and for PacBio data. Quiver was first version of method. It is a con-

sensus model based on a conditional random field approach. It’s accuracies were ap-

proaching or even exceeding Q60 (one error per million bases). But, over the years

Quiver has proven difficult to train and develop so it was replaced by Arrow - improved

consensus model based on a more straightforward hidden Markov model approach.

Racon (Vaser et al. (2016)) is an ultrafast consensus module for raw de novo

genome assembly of long uncorrected reads. It can be used as a polishing tool after the

assembly with either Illumina data or data produced by third generation of sequencing

(PacBio and Oxford Nanopore MinION data). It uses SIMD accelerated, partial order

alignment based stand-alone consensus module which when coupled with Miniasm

enables consensus genomes with similar or better quality than state-of-the-art methods

while being an order of magnitude faster.

Medaka (Nanoporetech (2018)) is a new tool for error correcting sequencing data,

particularly aimed at nanopore sequencing and the first known tool to use deep learning

methods for consensus phase (even though it is not finished yet). It is developed for

both training and inference. The model consists of two GRUs. Alignments in dataset

are converted to run-length encoding. On some assemblies it gave better results than

Racon and Nanopolish and, also, run time was faster. Those benchmarks can be found

2

on documents page of Medaka.

Similar problem to consensus is variant calling - problem in which we have a ref-

erence genome and then try to find differences between that reference genome and

assembled genome. Output is positions which differ in bases - variants. Since this

problem is even more similar to consensus problem in terms of deep learning, it is defi-

nitely worth mentioning and studying variant calling methods which use deep learning:

DeepVariant, VariantNet and Clairvoyante.

DeepVariant (Poplin et al. (2018)) is a pioneer work for using deep learning in

variant calling. It represents a significant step from expert-driven statistical modeling

towards more automatic deep learning approaches for developing software to inter-

pret biological instrumentation data. Instead of hand-crafting parametrized statistical

models which still produced a lot of errors despite invested effort, DeepVariant uses

deep convolutional neural network to call genetic variation in aligned next-generation

sequencing read data by learning statistical relationships (likelihoods) between images

of read pileups around putative variant sites and ground-truth genotype calls. Convo-

lutional neural network was selected due to the great results in image processing in

computer vision, so dataset for variant calling problem was formed by creating im-

ages of read pileups. DeepVariant won "highest performance" award for SNPs in a

FDA-administered variant calling challenge. Method was developed to perform well

not only on a specific technology, but on a variety of sequencing technologies.

VariantNet (Chin (2017)) is a simple convolutional network inspired by Deep-

Variant. It’s motivation was a loss of information in dataset during conversion of read

pileups to images in DeepVariant. Instead of creating images of read pileups, Vari-

antNet uses one-hot-like matrices to encode counting number of bases (A, C, G and

T) and differences between reads and reference for consecutive positions - the similar

dataset design is used in this work. Advantage of such dataset desing is much smaller

neural network: VariantNet uses only two convolutional and 3 fully-connected lay-

ers in contrast to DeepVariant which uses large neural network developed for image

classification.

Clairvoyante (Luo et al. (2018)) is recent work in variant calling using deep learn-

ing - it uses multi-task 5-layered convolutional neural network model for predicting

variant type (SNP or indel), zygosity, alternative allele and indel length from aligned

reads. It gave slightly better results than DeepVariant (e.g. on HG001 dataset Clair-

voyante had 97.65% precision, 96.53% recall and 97.09% F1-score, and DeepVariant

had 97.25% precision, 90.73% recall and 92.67% F1-score). Method is developed for

Ilumina, PacBio and Oxford Nanopore MinION data.

3

3. Environment

Nowadays more and more tools have multiple different dependencies on other tools,

frameworks, programming languages and drivers. Common case is installing different

versions of same tool on the same machine. This increased complexity of developing

makes projects very hard to maintain and almost impossible to reproduce on other

machines.

Container technology is popular and practical solution in this cases, especially in

deep learning where listed problems are faced daily. Containers allow isolating pro-

grams and packaging them with their dependencies. One of the other advantages of

containers is their fast start.

Container technology used here is Docker (Babak et al. (2017)). Created Docker

image used in these experiments contains appropriate CUDA, cuDNN, TensorFlow

versions, appropriate Python module dependencies (Pysam, Pysamstats, Keras, CometML,

...) and installation of various bioinformatics data handling tools (Minimap, Minimap2,

Racon, ...). Dockerfile can be found in provided Github repository so all dependencies

can be found in it. Further sections will describe each of those dependencies.

Exact version of Docker used is Nvidia-Docker2 (NVIDIA (2018)) runtime. Nvidia-

Docker2 runtime allows the usage of NVIDIA GPUs in the containers. If there are

multiple GPUs on a single machine, this runtime allows configuring containers to use

only specified GPUs by exposing only those GPUs in a container. This can be achived

with ‘NV_GPU=X‘ parameter in command line arguments where X is the GPU num-

ber which can be found with ‘nvidia-smi‘ command (if more GPUs need to be used,

numbers are split with ‘,‘). This is helpful since default behaviour of TensorFlow is to

occupy all GPUs on a machine, even in cases when only one GPU is used.

4

4. Methods

This chapter describes different models used in experiments and various workflows

which are the same for all models. Those workflows include dataset creation, model

training and inference (new consensus). There are some steps which are shared be-

tween different workflows. Most notable one is pileup creation which has three modes

of work.

4.1. Workflows

All workflows described here have corresponding scripts in code repository.

4.1.1. Dataset workflow

Figure 4.1 shows workflow for creating a dataset which will be used for training. Input

to this workflow is a list of pairs of references and corresponding reads.

For each pair, reference and its corresponding reads, following process is executed.

Reads are aligned to reference using Minimap2 (Li (2018)) because Minimap2 can

output an alignment in SAM format (Wikipedia (2016b)). (‘-ax map-pb/ont-pb -t‘ are

command line arguments for Minimap2 for alignment specifying PacBio or Nanopore

data and the number of threads for running). SAM format is then converted to BAM

format (Wikipedia (2016a)) using SAMtools (Research (2009)) (‘view‘ command in

SAMtools). Alignment in BAM format is then sorted by leftmost coordinates (‘sort‘
command in samtools), and, finally, index is created out of sorted BAM alignment

(‘index‘). That index is used by some tools which create pileups (Pysam (developers

(2009)) and Pysamstats (Miles (2012)) - both tools are described in Pileups creation

section).

Sorted BAM alignment and index are used in the next step by PileupGenerator to

create pileups. Pileups are shown in figure 4.2. For each position on reference, we

store the number of bases of reads aligned to that position. E.g. if there are 10 reads

5

Figure 4.1: Dataset workflow - shows how dataset is being created from reference and reads

pairs

aligned to some position i and 3 of those reads have base ’A’ at that position, 1 read has

base ’C’ at that position and 6 reads have base ’T’ at that position, then numbers for

that pileup column would be 3, 1, 0 and 6 with respect to bases ’A’, ’C’, ’G’ and ’T’.

Those numbers of bases will be used to create samples (X), and bases in references

will be used to create labels (y) for those samples.

Note that the reference could consist of multiple contigs due to various biological

reasons or due to the reference reconstruction errors caused by the assembler tools.

Above description for reference processing could be seen as situation in which there is

only one contig. In situation with multiple contigs, each of those contigs is processed

in the same manner as described above for the reference processing. After all contigs

are processed, all pileups from different contigs are concatenated in one list as if there

are no contigs (or, from another perspective: as if there is only one contig). This is

possible because the source of one pileup column (the exact contig) is irrelevant for

the model training. Multiple contigs are shown on figure 4.3.

The final step of this workflow is creating a dataset. At the start we select a neigh-

bourhood_size. neighbourhood_size specifies, when we are at some position i, how

much positions do we consider to the left and to the right of our current position i. This

results in creating a sample which covers a 2*neighbourhood_size+1 positions in total.

This is showed in figure 4.4. Final shape of samples is (2*neighbourhood_size+1, R)

where R is the number of rows shown on figure 4.4 and it depends on PileupGenerator.

(Actually, more intuitive shape which resembles the situation on figure 4.4 would be

6

Figure 4.2: Pileups

Figure 4.3: Reference consisting of multiple contigs

(R, 2*neighbourhood_size+1), but Keras tool needs it this way. More about Keras in-

put shapes can be found in section about models.) Constructing a sample in such way,

we hope to provide more information to model when trying to learn the mapping be-

tween samples and labels, i.e. for each position i, we are trying to predict from sample

the base at position i in reference using the pileup at that position and the neighbouring

pileups as help.

After samples are created for each reference and reads pair, those samples are

mixed together in order to make dataset more general (in contrast to having samples

from only one reference in dataset which could easily lead to overfitting to that partic-

ular reference). Notice that pileups for some reference-read pair and PileupGenerator

is always the same. Hence, pileups could be reused to create datasets with different

neighbourhood_size. They are computed only once per reference-read pair and Pile-

7

Figure 4.4: Sample

upGenerator and stored on a disk.

4.1.2. Training workflow

Figure 4.5 shows workflow for training the models. Input to this workflow is a dataset

and list of models to be trained.

Training queue manages the whole training process: it takes a model one by one

from the list of models, starts the training of that model by providing the model with

dataset and saves the trained model after training. Saved model is used for inference

in inference workflow.

During the training, various information is uploaded on CometML (developers

(2018)) - framework which captures the training progress, saves the training metrics

and provides visualization of training process. Such tool is inevitable since a lot of

experiments are run and without it lot of results would be just lost. Key feature of

CometML is that in order to start tracking the training progress almost no code needs

to be modified: user just needs to import CometML at the beginning of the Python

code and provide it with his user key which is always the same for the one specific

user.

8

Figure 4.5: Training workflow

4.1.3. Inference workflow

Inference workflow consists of two parts: assembly creation part, shown on figure 4.6,

and inference part, shown on figure 4.7. Input to inference workflow is reference and

corresponding reads. In real usage, reference could be omitted, but in these experi-

ments reference is used for calculation of assembly identity with reference before and

after polishing it with deep neural network.

Figure 4.6: Assembly creation part of the inference workflow

In the assembly creation part of inference workflow "blade script" is used to cre-

ate an assembly. Blade script follows the OLC paradigm in the assembly creation.

First, Minimap (min) is used to calculate the overlaps between reads. In layout phase,

Miniasm (min) is used to calculate the assembly graph. In consensus phase, Racon

is used to polish the assembly with two iterations of polishing. Note that deep learn-

ing model consensus polishing comes after another consensus tool. The idea is to

try to polish the assembly after another consensus tool so that the identity measure

of assembly to reference rises even more. Also, other consensus tools usually follow

hand-crafted polishing rules, while with deep learning model polishing rules are being

9

Figure 4.7: Inference part of the inference workflow

learned automatically. The last step in this part is the calculating the identity mea-

sure with Mummer tool (Kurtz et al. (2004)) (using ‘dnadiff ‘ command): it compares

reference and assembly and calculates the identity measure.

The inference part of inference workflow shares a lof of steps with dataset work-

flow as can be seen in figure 4.7. The input to this part are reads and assembly from

previous part of this workflow. First, reads are aligned to the assembly with Minimap2

and the aligment is converted to BAM file in the same manner as in dataset workflow.

Sorted BAM alignment and index are used in the next step by PileupGenerator to

create pileups. As opposite to the dataset workflow, pileups from different contigs are

kept separate so that the final consensus after the neural network polishing has the same

number of contigs as the assembly. After pileups creation, same procedure for dataset

creation is used as in dataset workflow to prepare data for inference. Prepared data

needs to have the same neighbourhood_size as the model which will be used for infer-

ence (that model was trained on dataset with the same neighbourhood_size). Output

of this step is the polished consensus with the neural network. The polished consensus

is then processed with Mummer together with the reference to calculate the identity

measure. Two identity measures are compared (one from assembly creation part and

the other from this part) to check the consensus quality after the polishing with neural

network.

4.2. Pileups creation

Pileups creation is used in dataset and inference workflow and is implemented in Pile-

upGenerator class. Configuration of pileup directly affects the dataset and model per-

10

formance - if pileup is constructed well (contains important information and that infor-

mation is represented well), model will perform better. Three version of pileup creation

are supported: overlap with no indels, overlap with indels and MSA supported overlap

with indels. All versions support multiple contigs: contigs are processed separately

and, depending on the dataset or inference workflow, they are concatenated (dataset

workflow) or they are passed to following steps separated (inference workflow).

4.2.1. Overlap with no indels

This version is implemented in PysamstatsNoIndelGenerator class. It provides the

pileups as described in dataset workflow. For each position on reference, we only store

the number of bases of reads aligned to that position. Indels are ignored. E.g. if

there are 10 reads aligned to some position i and 3 of those reads have base ’A’ at that

position, 1 read has base ’C’ at that position and 6 reads have base ’T’ at that position,

then numbers for 6 that pileup column would be 3, 1, 0 and 6 with respect to bases ’A’,

’C’, ’G’ and ’T’. The label for that column would be the base in reference at position

i. Such pileup is show on figure 4.8.

Figure 4.8: Overlap with no indels version of pileups

Pysamstats is a tool based on Pysam tool. Tools provide information needed for

pileup creation - for each position on reference, tools can provide the exact number of

bases in the alignment. Pysamstats provides aggregated results for each position, while

Pysam provides a list of reads for each position which then needs to be processed to

extract the number of each base. Therefore, Pysamstats is faster in execution and is

used in this work.

11

4.2.2. Overlap with indels

This version is implemented in PysamstatsIndelGenerator class. It differs from the

above version in a way that it stores indels in the following manner. For each posi-

tion on reference, Pysamstats provides the number of bases, but it also provides the

number of deletions and insertions. Pileup column now has two more rows: 4 rows

as before for bases and one row for insertions and one row for deletions as shown

in figure 4.9. Label is now not just the base in the reference at current pileup po-

sition. If the number of insertions or deletions for that position is greater then the

number of all other bases (numI > max(numA, numC , numG, numT) or numD >

max(numA, numC , numG, numT)), then label is insertion or deletion, depending which

number is greater. Otherwise, label is the base in the reference at that position.

Figure 4.9: Overlap with indels version of pileups

Note that insertions and deletions in this work are considered in regards to reads.

Deletion means that there is one base missing in the read so there is a gap in the

read. Insertion means that there is one base inserted in the read so there is a gap

in the reference. When Pysamstats reports number of deletions for some position,

it just counts the deletions in reads on that position. Since Pysamstats only iterates

over positions in reference, reporting number of insertions is not that trivial. Hence,

when Pysamstats reports the number of insertions for some position, it counts how

many reads have an insertion sequence on the right of that position. All contigs are

processed separately.

12

4.2.3. MSA supported overlap with indels

This version is implemented in RaconMSAGenerator class. Previous version didn’t

consider the alignment between the reads, but only the alignment of reads to the ref-

erence. This version considers the alignment between the reads also. By using the

sliding window technique when looking at the alignment to the reference, it tries to

align reads between themselves to make pileups more accurate. Described technique

is know as Multiple Sequence Alignment (MSA).

Modified version of Racon tool is used to provide MSA. It outputs the textual

file which is organized in the following way. Every six lines represent the following:

contig, number of ’A’ bases, number of ’C’ bases, number of ’G’ bases, number of ’T’

bases and the number of deletions. Insertions are encoded into contig. As insertion

is the gap in the reference, it is represented by empty position in the contig. MSA

output file is shown in the figure 4.10. When calculating the label for some position, if

there is a gap in the contig (insertion), it is labeled as insertion. Otherwise, if number

of deletions for that position is greater than number of all bases, pileup is labeled as

deletion. At last, if non of the previous two cases are filled, pileup is labeled as the

base in the contig for that position.

Figure 4.10: MSA supported overlap with indels version of pileups

4.3. Models

During experimenting, lot of model architectures were tested. Some of them showed

poor performance, some of them were good. Hence, here are described only four out of

30 models tested. When hyperparameter tuning is taken into account, actual number of

tested architectures is much greater. Model naming was their serial number of creation

and does not have any special meaning.

13

One specificity of designed models is their size - such models are called slim mod-

els: 3 out of 4 described models have only 104 parameters, while 1 model has 0.5M

parameters. Small size enables fast training and inference. But, despite fast inference,

the inference workflow takes a couple of minutes for bacteria with genome size of few

million bases because a lot of time is spent in other steps (preprocessing - creating pile-

ups and data with appropriate neighbourhood_size - and postprocessing - converting

predictions to nucleus bases).

All described models have the same following settings. Adam (Kingma i Ba

(2014)) is the algorithm used for optimizing the cross-entropy loss. Batch size was

10000. Models were trained for 150 epochs with early stopping (Goodfellow et al.

(2016)) criterion set to stop the process if there were no improvement in validation

loss for 3 consecutive epochs. Early stopping is actually one way of the implicit reg-

ularization. In the experiments, early stopping usually ended the training long before

150th epoch - experiments were stopped around 20th epoch. The learning rate policy

was set to reduce the learning rate after 50 epochs - every 5th epoch after 50th epoch,

learning rate was set to 0.95 value of the current learning rate. As can be seen, this

learning rate policy rarely took effect due to the early stopping.

Abbreviations for layers parameters used in the model figures are the following.

For convolutional layer, f is the number of filters (output channels), p is padding, ks is

kernel size, s is the stride and reg is the kernel regularization - weight decay - in form

of L2-norm. For polling layer, ps is the pool size and s is the stride. For dense layer, o

is the number of neurons. For dropout layer, p is the fraction of input units to drop.

4.3.1. Model 7

Model 7 is shown in figure 4.11. This slim model consists only of two 1D-convolutional

layers, one maximum polling layer (after the first convolutional layer) and one dense

block. Activations used in convolutional layers are ReLU and in the output (dense)

layer is the softmax. All layer parameters are described in the figure. Neither layer has

explicit regularization (like weight regularization in convolutional and dense layer).

Explicit regularization showed performance decrease on validation set. Reasons for

good performance without explicit regularization are probably the effect of implicit

regularization caused by large enough dataset used for training, slim model itself

(model with not too large capacity) and early stopping.

Model has 10286 parameters for dataset with neighbourhood_size = 20.

14

Figure 4.11: Model 7

4.3.2. Model 11

Model 11 is shown in figure 4.12. This slim model differs from model 7 only in one

layer: batch normalization (Ioffe i Szegedy (2015)) layer after the second convolutional

layer. Activations used in convolutional layers are ReLU and in the output (dense)

layer is the softmax. Again, neither layer has explicit regularization (like weight reg-

ularization in convolutional and dense layer) due to the same reasons as for model

7.

Figure 4.12: Model 11

Model has 10466 parameters for dataset with neighbourhood_size = 20.

4.3.3. Model 23

Model 23 is shown in figure 4.13. This slim model has three 1D-convolutional layer,

two maximum polling layer (after the first two convolutional layers), one batch nor-

malization layer (after the third convolutional layer) and one dense layer. Activations

15

used in convolutional layers are ReLU and in the output (dense) layer is the softmax.

Neither layer has explicit regularization due to the same reasons as for previous two

models.

Figure 4.13: Model 23

Model has 12866 parameters for dataset with neighbourhood_size = 20.

4.3.4. Model 24

Model 24 is shown in figure 4.14. This model is not so slim as the previous three

models. It consists of three 1D-convolutional layers, three maximum polling layers

(one after each convolutional layer), two dense layers and one dropout. Activation

used in all layers except the last dense layer is SeLU (Klambauer et al. (2017)). The

last dense layer has softmax activation function. Convolutional layers in this model are

regularized with L2 weight regularization with weight decay set to 10−3.

Model has 527062 parameters for dataset with neighbourhood_size = 20.

4.3.5. Input and output shape of models

Datasets for training and data which is prepared for inference are shaped in a particular

way to fit the Keras input shapes.

The first layer in all models in 1D-convolutional layer. It’s input shape is (batch,

steps, channels). batch is the number of samples in batch. steps is the width of sample

(in this case it is equal to 2*neighbourhood_size+1). This number could be viewed

as the number of time steps in time series sequence, hence the name steps is used.

channels is the number of input channels in that 1D-convolutional layer.

16

Figure 4.14: Model 24

Because of such input shape, samples are not in a more intuitive form as shown on

figure 4.4 (kod datasetworkflowa), but are in a shape shown on figure 4.15. Every

row which stores the number of specific base for consecutive positions is placed in it’s

own channel making the data one dimensional (with more channels) instead of two

dimensional. Actually, such shape better fits the convolutional layer properties.

Figure 4.15: Input shape consists of multiple channels

If the data were two dimensional (all rows one below each other in two dimensional

matrix), that would suggest some two dimensional topological order. But, rows in a

sample are placed in arbitrary order - even though in the first row is the number of

bases ’A’, that could be any other base. Shaping a data in two dimensional shape

17

would provide the information that e.g. ’A’s are above ’C’s, which are above ’G’s, and

so on, which is obviously misleading. As it is shown here, two dimensional topological

order does not exist here as in images, but only a one dimensional topological order

(genomes and reads can be viewed as a sequence with one dimensional topological

order). Hence, placing all the rows in their own channels is reasonable.

One dimensional topological order which is processed with 1D-convolution is

the difference from other similar models (like Clairvoyante, DeepVariant, VariantNet,

...) which use 2D-convolution.

18

5. Results

Results represented here show that constructed models performed slightly worse and

in the few cases slightly better then the consensus without neural network polishing.

Various reasons for such results are described in the following sections. Nevertheless,

since a lot of steps in the workflows are questionable (like dataset configuration, post-

processing of predictions in the inference) a lot of room remains for progress and the

model improvement.

5.1. Polishing results

All tables are divided in 3 parts. In the first row there is an average identity of

the consensus before the polishing with neural network calculated with Mummer’s

tool dnadiff command. Other rows show the average identity of the consensus after

the polishing with neural network calculated with the same command. These rows

are grouped by models trained on the same neighbourhood_size. First group has

neighbourhood_size = 15 and the other neighbourhood_size = 20. Also, last column

shows the validation accuracy of the trained models. Validation accuracy is missing

for some models due to the failure of CometML to store the training progress.

Different tables shows the results for different pileup configurations. Not all 4

described models are used in all datasets and pileup configurations. The reason is that

some pileup configurations were shown to be inefficient: e.g. overlap with no indels

definitely does not contain all important information because it does not include indels

neither in samples neither in the labels. Also, some models were omitted during the

experiments in later phases of research as newer models showed better performance.

Results are shown for 3 different datasets. One dataset contains data from Paci-

ficBiosciences sequencers, other two from Oxford Nanopore MioION sequencers. In

some datasets the part of the data which was used during the training was also used

in the inference: reads for some bacteria were used in dataset workflow to create the

dataset for training, and later those same reads were used for polishing the consensus.

19

Method
Avg. Identity

Vall acc
E K M S92 S129

Baseline 99.57 99.15 98.83 98.44 98.35 -

n=15
model 7 99.56 98.95 98.89 98.43 98.33 98.71

model 11 99.56 98.95 98.90 98.43 98.33 98.65

n=20 model 7 99.56 98.93 98.89 98.42 98.32 98.68

model 11 99.56 99.01 98.90 98.43 98.34 98.70

Table 5.1: Average identity and validation loss of models on dataset created from Overlap with

no indels version of pileups for All bacteria dataset. Abbreviations meanings are given in the

text.

This is obviously not an unbiased measure, but the reason why this was done is to pro-

vide some type of sanity check. If the consensus polishing with neural network cannot

improve the consensus whose reads were part of the training process, then it is hard to

expect that it will generalize well on samples from reads which were not in the dataset.

5.1.1. All bacteria dataset - PacificBiosciences data

This dataset consists of reads created with PacificBiosciences sequencers from 3 bacte-

ria: E. coli(NCTC86), M. morgani(NCTC235), S. enterica(NCTC92 and NCTC129).

In total, there are 4 groups of reads. In the inference, all 4 groups are used which were

in the training set and also an additional group of reads - K. penumoniae (NTCT204)

- which was not in the dataset. The name of the dataset, All bacteria dataset, only

suggest that it was a mix of reads from multiple bacteria.

Table 5.1 shows the results with pileups created by PysamstatsNoIndelGenerator.

Table 5.2 shows the results with pileups create by PysamstatsIndelGenerator. Table

5.3 shows the result with pileups created by RaconMSAGenerator. The abbreviations

in the tables are the following: E. coli NTCT86 (E), K. pneumoniae NCTC 204(K),

M. morgani NCTC235 (M), S. enterica NCTC92 (S92), S. enterica NCTC129 (S192).

5.1.2. S. cerevisiae dataset - Oxford Nanopore MinION data

This dataset consists of reads created with Oxford Nanopore sequencers. Dataset has

reads from two reads groups, both groups for S. cerevisiae: one is from R7 and the

other from R9 (Nanopore (2016)) sequencing chemistry. In the inference, along with

S. cerevisiae read groups, E. coli reads were also used.

20

Method
Avg. Identity

Vall acc
E K M S92 S129

Baseline 99.57 99.15 98.83 98.44 98.35 -

n=15
model 7 99.56 98.96 98.89 98.43 98.32 99.75

model 11 99.56 98.97 98.89 98.42 98.31 99.76

n=20 model 7 99.56 99.05 98.89 98.42 98.32 99.74

model 11 99.56 98.91 98.89 98.42 98.31 99.78

Table 5.2: Average identity and validation loss of models on dataset created from Overlap with

indels version of pileups for All bacteria dataset. Abbreviations meanings are given in the text.

Method
Avg. Identity

Vall acc
E K M S92 S129

Baseline 99.57 99.15 98.83 98.44 98.35 -

n=15

model 7 99.57 98.77 98.93 98.41 98.36 99.04

model 11 99.57 98.89 98.93 98.41 98.37 99.03

model 23 99.57 98.91 98.92 98.41 98.36 99.01

model 24 99.54 97.92 98.84 98.36 98.24 98.88

n=20

model 7 99.57 99.01 98.92 98.41 98.37 99.05

model 11 99.58 98.98 98.92 98.40 98.37 99.03

model 23 - - - - - -

model 24 99.54 97.86 98.84 98.36 98.25 98.87

Table 5.3: Average identity and validation loss of models on dataset created from MSA sup-

ported overlap with indels version of pileups for All bacteria dataset. Abbreviations meanings

are given in the text.

21

Method
Avg. Identity

Vall acc
E. coli S. cerevisiae R7 S. cerevisiae R9

Baseline 99.32 98.74 97.40 -

n=15
model 7 99.32 98.74 97.42 99.99

model 11 99.32 98.74 97.42 99.99

n=20
model 7 99.32 98.74 97.41 -

model 11 99.32 98.74 97.42 99.99

Table 5.4: Average identity and validation loss of models on dataset created from Overlap with

no indels version of pileups for S. cerevisiae dataset

Method
Avg. Identity

Vall acc
E. coli S. cerevisiae R7 S. cerevisiae R9

Baseline 99.32 98.74 97.40 -

n=15
model 7 99.30 98.62 97.32 99.93

model 11 99.31 98.63 97.32 99.95

n=20
model 7 99.31 98.63 97.32 -

model 11 99.31 98.64 97.33 -

Table 5.5: Average identity and validation loss of models on dataset created from Overlap with

indels version of pileups for S. cerevisiae dataset

Table 5.4 shows the results with pileups created by PysamstatsNoIndelGenerator.

Table 5.5 shows the results with pileups create by PysamstatsIndelGenerator. Table

5.6 shows the result with pileups created by RaconMSAGenerator.

5.1.3. Fusobacterium dataset - Oxford Nanopore MinION data

This dataset consists of reads created with Oxford Nanopore sequencer from differ-

ent strains of fusobacterium (Todd et al. (2018)). Training dataset has reads from

four strains: gonidiaformans (G), mortiferum (M), necrophorum (Ne) and nucleatum-

25586 (Nu25). Inference was also done on additional strain which were not in the

training set: nucleatum-23726 (Nu23), periodonticum (P), ulcerans (U) and varium

(V). All reads are sequenced using R9 chemistry.

Table 5.7 shows the result with pileups created by RaconMSAGenerator. Abbrevi-

ations in the table are described above.

Results show that no significant improvement hasn’t yet been made: sometimes

22

Method
Avg. Identity

Vall acc
E. coli S. cerevisiae R7 S. cerevisiae R9

Baseline 99.32 98.74 97.40 -

n=15

model 7 99.21 98.53 98.97 99.48

model 11 99.17 98.47 98.93 99.43

model 23 99.24 98.53 98.94 99.48

model 24 98.97 98.43 98.82 99.26

n=20

model 7 99.05 98.34 98.79 99.47

model 11 99.17 98.46 98.91 99.47

model 23 99.20 98.61 98.99 99.41

model 24 99.00 98.42 98.82 99.29

Table 5.6: Average identity and validation loss of models on dataset created from MSA sup-

ported overlap with indels version of pileups for S. cerevisiae dataset

Method
Avg. Identity

Vall acc
G M Ne Nu25 Nu23 P U V

Baseline 99.38 99.27 99.35 99.34 94.78 99.33 98.28 99.20 -

n=15
model 11 98.89 98.84 98.81 98.89 91.44 98.87 97.78 98.84 99.70

model 23 98.98 98.93 98.90 98.97 91.71 98.94 98.00 98.91 99.69

model 24 98.97 98.89 98.87 98.96 92.46 98.95 97.17 98.75 99.53

n=20 model 11 98.96 98.91 98.87 98.95 91.73 98.91 98.24 98.90 99.69

model 23 98.82 98.77 98.73 98.81 90.91 98.78 98.20 98.81 99.70

model 24 98.82 98.73 98.75 98.76 92.55 98.74 97.55 98.66 99.54

Table 5.7: Average identity and validation loss of models on dataset created from MSA sup-

ported overlap with indels version of pileups for Fusobacterium dataset. Abbreviations mean-

ings are given in the text.

23

Dataset\pileup version

O
ve

rl
ap

w
ith

no
in

de
ls

O
ve

rl
ap

w
ith

in
de

ls

M
SA

su
pp

or
te

d
ov

er
la

p
w

ith
in

de
ls

All bacteria dataset 15M 15M 28M

S. cerevisia dataset 22M 22M 35M

Fusobacterium dataset - - 11M

Table 5.8: Number of samples in millions in the training split for each dataset and pileup

version

models increase the average identity of polished consensus, sometimes they decrease

it.

5.2. Datasets visualization

Investigating the dataset properties can reveal some of the reasons for model failing to

improve the average identity of polished consensus.

Following figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 show dataset properties for var-

ious datasets and pileups versions. First plot in the figure represents the total number

of samples for each class. Second plot shows the ratio between the number with most

samples and the number of samples of that current class. Class with the most samples

will have the ratio of 1, and the class with the number of samples equal to the half of

the largest number of samples will have the ration of 0.5.

All plots are made for dataset with neighbourhood_size = 15, but distributions are

the same for neighbourhood_size = 20 and the absolute numbers do not differ much,

if at all. Table 5.8 shows the number of samples in millions in the training split for

each dataset and pileup version. The large dataset sizes (between 10 and 35 millions)

causes implicit regularization effect during training and guarantee that models won’t

just remember all the samples. The validation splits of those dataset had size of 10%

of the corresponding training dataset.

24

Read type
Error rate (Proportion of overall error) (%)

Overall Insertion Deletion Mismatch

PacBio 1.72 0.087 (5.06) 0.34 (19.48) 1.30 (75.46)

ONT 13.40 3.12 (32.30) 4.79 (35.70) 5.50 (40.99)

Table 5.9: Comaprison of error rates between PacificBiosciences and Oxford Nanopore reads

It looks like the key problem is the imbalance in the number of classes. In a MSA

supported overlap with indels pileup version, insertion class has the most examples,

nucleus bases have approximately the same number of samples, while deletion class

has the smallest number of samples. Such distribution of samples per classes affects

the model ability to learn the underrepresented classes: models make the most mistakes

with deletions (or insertions) as it will be shown in the next section. In a Overlap with

indels pileup version, situation is the opposite for the insertions and deletions numbers.

There are significant differences in the error rates in PacificBiosciences and Oxford

Nanopore reads. Comparison between error rates is given in (Weirather et al. (2017))

and is shown in table 5.9. It can be seen that PacificBiosciences reads have much

smaller error rate and that the most errors come from mismatches, while in Oxford

Nanopore reads error rate is much larger and different error types share similar propor-

tion of overall error. Also, it is important to be aware of the average read length: for

PacificBiosciences reads it is 10 − 15kb, while for Oxford Nanopore length can reach

up to 900kb as shown in (Birla (2017)).

5.3. Visualization of samples

Figure 5.8 shows the incorrect predictions for model 11 on Fusobacterium dataset with

MSA supported overlap with indels pileup version on a validation split. Plot shows that

the most incorrect predictions were for insertions. Those predictions should have been

some other class, but the model put them to insertion class. The reason for this is that

the insertion class has the most samples in the training set as shown in the previous

section. The next largest erroneous predictions were for deletions. Those predictions

should have been some other class, but the model put them to deletion class. The

reason for this is that the deletion class is overly underrepresented with samples as

shown in the previous section.

Figure 5.9 shows the confusion matrix on validation split of mentioned dataset for

25

model 11. Here can be seen that the most deletions were predicted to be insertions.

Reason is simple: model gave them the label of most represented class. Figure 5.10

shows a random sample together with model’s posterior probabilities for that sample

where sample was wrongly labeled as not a deletion. Label t on x axis represents

the middle position for which the prediction is being made, while flanking positions

represent the neighbourhood with neighbourhood_size = 15.

Same visualizations for other models and datasets are omitted here because they

are the same for this pileup version on all dataset for all models. Other pileup versions

are not showed because models generally perform better with this pileup version.

5.4. Ablation study

5.4.1. Class weights

To confront the problem of class imbalance, one approach is to use the class weights

during the training. Underrepresented classes can be given larger class weights, and

overrepresented classes can be given smaller weights. Those class weights are then

incorporated in the training process when calculating the loss. Loss for the current

sample is multiplied with appropriate class weight and then backpropagated in the

network to update the network weights.

This approach introduces new hyperparameters - class weights. The simplest way

to calculate the class weights could be to set them to the inverse of class frequency in

the dataset. Such class weights could be calculated with sklearn’s compute_class_weights()
method (learn developers (2007)).

Table 5.10 shows the validation accuracy of models with and without class weights.

It turns out that inverse frequency for class weights does not improve the model perfor-

mance as all validations scores with such class weight are 1 − 2% lower. The inverse

frequency puts too much weight on the underrepresented class - deletions.

5.4.2. Finetuning on smaller dataset

One other approach to the problem of class imbalance is to create a synthetic dataset

with different samples distribution. For that purposes, couple of synthetic datasets were

created from Fusobacterium dataset with MSA supported overlap with indels pileup

version and neighbourhood_size = 20. All those synthetic dataset had larger number

of deletions (50k deletions) and other classes had the same or slightly larger number

26

Val acc Without class weights With class weights

model 11 99.69 98.86

model 23 99.69 98.51

model 24 99.49 97.78

Table 5.10: Comparison of validation accuracy of models on Fusobacterium dataset with MSA

supported overlap with indels pileup version and neighbourhood_size = 15 with and without

class weights calculated using inverse frequency

of samples.

All those synthetic datasets showed degradation of performance of models even

though models were first trained on original datasets and then finetuned on synthetic

datasets. Neither achieved the training accuracy over 50%. Freezing the weights in

first layers of the models did not help (it is generally accepted that first layers handle

lower abstraction features and that in finetuning it is enough to train just the couple of

last layers).

5.4.3. Different pileups

Different pileup versions used in this project are described in Methods section. Overlap

with no indels and Overlap with indels pileup versions showed that models trained with

them on average showed slightly lower performance on consensus polishing then when

trained with MSA supported overlap with indels. That is reasonable since distribution

of samples on those two models almost does not include the insertions as shown in

dataset visualizations.

5.4.4. Manual model arhitecture search

As stated before, 30 different model architectures were tested manually. Those exper-

iments included models with different number of filters in convolutional layers, kernel

sizes, batch normalization after various layers, maximum pollings to increase the re-

ceptive fields of layers and so on. Models 7, 11, 23 and 24 showed the best performance

on average. List of all experiments (over 300) can be found on CometML page of the

project - https://www.comet.ml/ajuric/consensusnet.

27

5.4.5. Weight decay

In Models section, three described models had no weight decay applied to their weights

during the training. Weight decay is one of the explicit regularization techniques.

When weight decay was applied, model showed the decrease in the performance -

validation accuracy dropped about 2 − 3%, so models were underfitted due to exces-

sive usage of regularization (large enough dataset, slim model with lower capacity and

early stopping are all forms of the implicit regularizations and are already used during

the training).

5.5. Hyperparameter tuning

To find the better values of hyperparameters of the network (e.g. number of filters and

kernel size in the convolutional layers), Bayesian Hyperparameter optimization was

used.

Bayesian Hyperparameter optimization (Koehrsen (2018)) is the technique which

estimates the score function in the hyperparameter space: P (score|hyperaparameters).

Optimization process picks the set of hyperparameters for which it believes are going

in the direction of increasing the score function. After the model has finished training

and is evaluated, optimization adjust it’s estimation of the score function and repeats

the process. The process finishes after the optimization process concludes that its es-

timation matches the real score function in the hyperparameter space or the maximum

number of steps are reached. Because in each iteration the model goes through full

training procedure, the process might take long to converge, especially if model is

large.

CometML supports the Bayesian Hyperparameter optimization and was used to

optimize the number of filters in convoultional layers, kernel size in convolutional lay-

ers, maximum pooling size, weight decay and batch size. Over 300 experiments were

executed during under the Bayesian Hyperparameter optimization and all can be found

at https://www.comet.ml/ajuric/consensusnet - the project page. Optimizations showed

a small (0.01%) or no improvement in model performance in contrast to default model

hyperparameters which are described in Model section. Such findings suggest that

in the whole process the models are not the weak part as they are trained to their

maximum extent, but that the other parts should be optimized: class imbalance in the

datasets, other pileups versions, and so on.

28

Figure 5.1: Visualization of All bacteria dataset with neighbourhood_size = 15 and Overlap

with no indels pileup version

Figure 5.2: Visualization of All bacteria dataset with neighbourhood_size = 15 and Overlap

with indels pileup version

Figure 5.3: Visualization of All bacteria dataset with neighbourhood_size = 15 and MSA

supported overlap with indels pileup version

29

Figure 5.4: Visualization of S. cerevisiae dataset with neighbourhood_size = 15 and Overlap

with no indels pileup version

Figure 5.5: Visualization of S. cerevisiae dataset with neighbourhood_size = 15 and Overlap

with indels pileup version

Figure 5.6: Visualization of S. cerevisiae dataset with neighbourhood_size = 15 and MSA

supported overlap with indels pileup version

30

Figure 5.7: Visualization of Fusobacterium dataset with neighbourhood_size = 15 and MSA

supported overlap with indels pileup version

Figure 5.8: Visualization of incorrect predictions for model 11 on Fusobacterium dataset with

MSA supported overlap with indels pileup version on a validation split

Figure 5.9: Confusion matrix for model 11 on Fusobacterium dataset with MSA supported

overlap with indels pileup version on a validation split

31

Figure 5.10: Visualization of random sample which was wrongly labeled as not a deletion for

model 11 on Fusobacterium dataset with MSA supported overlap with indels pileup version on

a validation split

32

6. Future work

The whole process is time consuming and there are a lot of places to improve. Hence,

a couple few ideas were left untested and are guidences for future work.

6.1. Datasets

Creating a dataset in the same form as is described in other similar works is definitely

worth of trying. Clairvoyante and VariantNet models are both convolutional models

and they construct the dataset in the way superior to DeepVariant as the authors de-

scribe it. Since those models solve other problem (variant calling), dataset should be

adopted for consensus polishing problem, but the main idea stays the same.

Those dataset provide more contextual information than just the neighbourhood

of the current positino for which prediction is being made - they include the matrices

which also stores the differences between the reads and references. Such addition of

information could help to improve the polishing consensus process.

6.2. Class weights and sample weights

This project already tried the simplest form of class weights - the inverse frequency.

Other class weights could be also tried as the inverse frequency was found to put too

much weight on the underrepresented class - deletions. Possible solutions could be

putting smaller weight to underrepresented class than the inverse frequency approach

would do.

Other possible direction is to put the weights on the samples. This way the sample

from the same class can get the different weights which could be especially helpful if

particular samples from some class are hard to learn.

The idea of sample weights can be even more extended. In a situation where data

is sequential (which is the case with samples with neighbourhood), weights could be

33

defined for each time step of sequential data. Such modeling enables placing the in-

formation on the center of the sample. With the current learning configuration, models

by themselves must figure out that the most information for predicting the right base

for some sample is stored in the center of the sample. By using the weights for steps,

models are suggested to put more focus on the center of the sample.

All described techniques are supported in Keras’ fit() method (Charles (2013)).

6.3. Edit distance measure

Besides the average identity measure used in this project to check if polished consensus

have improved, other good measure could be an edit distance between the reference and

the polished consensus. Edlib (Sosic i Sikic (2016)) tool could be used to calculate the

edit distance.

That tools was used in this project to try to calculate the edit distance, but it showed

problems when it was used on data consisting of multiple contigs. Also, if data is

circular (which is common for bacteria), data must be preprocessed in a way to make

both data start at position in which are they aligned. To calculate the coordinates from

which the alignment starts, Mummer tool could be used.

6.4. Inference - output size

Currently the size of the output is 1, since for each sample models predict one base.

The question remains what would happen if the model didn’t predict only one base,

but multiple bases (e.g. 2 or 3 consecutive bases). In such scenario, the sample would

have multiple centered positions along with neighbourhood_size flanking positions.

When pileups are being created, sliding window would have the size of 2*neigh-

bourhood_size+x where x is the number of centered positions (and, also the size of the

output). If sliding window was then moved for x positions, the predictions wouldn’t

overlap and they would be just appended at the polished consensus. If the sliding

windows was moved for less than x positions, subsequent predictions would overlap

in some number of positions and those overlapping would have to be resolved in the

postprocessing (e.g. the simplest overlap postprocessing could be the majority vote).

34

6.5. Inference postprocessing

Current inference postprocessing works in a way that for each prediction (which are

posterior probabilities) appropriate base is appended onto polished consensus which is

an empty at the beginning. If prediction is a nucleus base, then corresponding base is

appended (’A’, ’C’, ’G’ or ’T’). If the prediction is insertion, then nothing is appended

since it means that reads have something which was not there. If the prediction is a

deletion, then prediction is a symbol ’N’ representing that nucleus base is missing from

reads.

Putting the symbol ’N’ could confuse the metrics and potentially lower the score.

Edlib tool has support to provide which bases are the same when calculating the edit

distance, hence one could provide that all other bases are the same as ’N’. Other try

could be, if the prediction is a deletion, too also append nothing, but it’s not clear how

this will affect the metrics since in this situation the final length of polished consensus

is being shortened when it should not be.

6.6. Multiple output branches or specialized models

In order to better handle the underrepresented class (deletions), specialized branch of

the network, of whole new network, could be used to predict the deletion class. If this

branch, or network, predicts the that input is not a deletion, normal output is considered

to resolve whether it is a base or an insertion. Such approach is used in Clairvoyante

XY (put reference) to separate the outputs which predict the bases and the outputs

which predict other useful information (zygosity, variant type and so on).

6.7. Homopolymers

At the end of the work, in order to find the clues which part of the workflow could be

improved, MSA supported overlap with indels pileup version was investigated (MSA

was done by Racon tool). Especially, deletion class was investigated. When neural net-

work polishes the consensus, if it predicts a deletion, it will output symbol ’N’ meaning

that some base is missing here. If the model knew what was missing and instead of

symbol ’N’ appended the true base to the polished consensus, that will definitely rise

the final polished consensus quality.

It turns out that there are some regularities when the deletion happens. Looking at

the PacBio pileups, it can be seen that most of the time there are two cases. In one case

35

Datasets
total

deletions

homopolymers

before

deletions

homopolymers

after

deletions

deletion

bursts

with

length 2

deletion

bursts

with

length 3

deletion

bursts

with

length 4

deletion

bursts

with

length >4

All becteria 77787 15901 13865 4983 2197 1080 2212

S. cerevisiae 216684 47766 88398 24559 4607 631 152

Fusobacterium 301368 71621 164367 18112 5136 1943 2589

Table 6.1: Total number of deletions, homopolymers after and before deletions and length of deletion bursts

per dataset

a deletion is surrounded by sequence of the more deletions (burst of deletions). These

are the parts of the subsequent pileup labels for this case: ...GDDDDIGITDDGDDD

DDDCDDDDDDCDDDCDDCDDDDDDTG..., ...IT ITIITDDDCDDDDD

DDDDDDDDDDDDDCTDTIDDDDCAD..., ... In the other case, a deletion

is intertwined with other bases and insertions. These are the parts of the subsequent

pileup labels for this case: ...AAAITGIGAIAICICIITIIDGAIIGICCIIIGCIG

ITIGI..., ...CCTIGICIITGGTIIGIAIIDIIDCIAIGIGITIIAIIATT..., ...

Looking at the Oxford Nanopore pileups, it can be seen that the mentioned two

cases also occur but slightly less frequent, while there is also a third case. In the Oxford

Nanopore pileups, deletions often come at the beginning of the homopolymer regions -

sequences of the same bases one after the another. These are the parts of the subsequent

pileup labels for this case: ...IIIIIIIAAIIIIIGAAAATDAAAAACAGATGIIIA

ATAGI..., ...ICIICTDCCCITIITIGGTIDGGGGGCACTTITGGAIGIGA...,

...IIIIIITTTDIITITTTDDDDTTTTTTTTTGACGACITICT....

All those statistics are summarized in the table 6.1. It can be seen that in datasets

created from Oxford Nanopore reads deletions surrounding were homopolymers. Hence,

it would be reasonable to try ,in the inference postprocessing, to put the homopoly-

mer base in the place of symbol ’N’ when working with Oxford Nanopore reads to

improve the polished consensus quality. Other aproach taking this findins into the ac-

count would be to make an additional prediction branch (like described in the previous

section) which would predict the length of deletions. By knowing the deletion length,

model could try to replace such region with appropriate homopolymer base.

36

6.8. Possible incompatibility of optimization processes

This last section does not need to be considered as an idea to try - rather an observation.

While training a deep neural network, model is forced to optimize the accuracy on the

samples which are only a tiny part of the polished consensus. While one can hope

that with optimizing this problem it would also increase the performance on the other

problem (creating a better polished consensus), there is currently no a strong proof for

such behaviour.

To make these two optimization processes match, instead of using an cross-entropy

error for each sample in the dataset, more accurate loss information would be the av-

erage identity (or edit distance) of polished consensus created with the model which

contains the same weights as in the current step of the training process. But, calculat-

ing the whole polished consensus and it’s metric before every parameter update is time

consuming. Also, it is questionable if such information would be derivable (maybe the

edit distance could be the derivative?) which might make it unusable in backpropaga-

tion and it might overfit to that particular reference.

Hence, keeping the two optimization processes separate in the theory is not the

same, but in the practice it is shown that by optimizing a model performance on the

samples, both optimization processes are being optimized.

37

7. Conclusion

This work shows that polishing a consensus with neural network in order to increase

the metric score (e.g. average identity) is possible, but the whole process still needs

the improvements.

Process is highly fragile as it consists of few workflows with a lot of steps. Those

fragile parts are pileups creation, dataset construction, model training, inference, infer-

ence post processing and so on. Among three represented pileup versions, one showed

having on average a better contextual information than the others, but there is no reason

that there is no another pileup version which wouldn’t do better. There is no standard

dataset on which models could be trained and compared as in other fields where deep

learning techniques are being applied (e.g. image processing). The existence of such

standard dataset would definitely improve the applications of deep learning techniques

in this field.

Forming a samples from a dataset and then using those samples for training was

shown as a rather simple problem even for slim neural networks since a lot of models

achieved a validation accuracy over 99%. The main problem which occurs for imple-

mented pileup creation and dataset is the class imbalance. The number of deletions

is well underrepresented, hence making it hard for models to properly learn to predict

deletion samples.

Nevertheless, despite all those problems, this work hopefully provides a way to a

further improvement of the method. Sometimes resulting in a slightly better or slightly

worse results and most of the times giving the same result, confirms that it might be on

a good track.

38

BIBLIOGRAPHY

Bashari Rad Babak, John Bhatti Harrison, i Ahmadi Mohammad. An introduction

to docker and analysis of its performance. International Journal of Computer Sci-

ence and Network Security, 2017. URL http://search.ijcsns.org/07_

book/html/201703/201703027.html.

Bhagyashree Birla. Pacbio vs. oxford nanopore sequencing,

2017. URL {https://blog.genohub.com/2017/06/16/

pacbio-vs-oxford-nanopore-sequencing/}.

P.W.D. Charles. Project title. https://github.com/charlespwd/

project-title, 2013.

Jason Chin. Simple convolutional neural network for genomic variant call-

ing with tensorflow, 2017. URL https://towardsdatascience.com/

simple-convolution-neural-network-for-genomic-variant-calling-with-tensorflow-c085dbc2026f.

CometML developers. Cometml, 2018. URL https://www.comet.ml/.

Pysam developers. Pysam, 2009. URL https://pysam.readthedocs.io/

en/latest/api.html.

Ian Goodfellow, Yoshua Bengio, i Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

Sergey Ioffe i Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL

http://arxiv.org/abs/1502.03167.

Diederik P. Kingma i Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

39

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, i Sepp Hochreiter. Self-

normalizing neural networks. CoRR, abs/1706.02515, 2017. URL http://

arxiv.org/abs/1706.02515.

William Koehrsen. A conceptual explanation of bayesian hyperparameter optimization

for machine learning, 2018. URL https://towardsdatascience.com/

a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f.

Stefan Kurtz, Adam Phillippy, Arthur L. Delcher, Michael Smoot, Martin Shumway,

Corina Antonescu, i Steven L. Salzberg. Versatile and open software for com-

paring large genomes. Genome Biology, 5(2):R12, Jan 2004. ISSN 1474-

760X. doi: 10.1186/gb-2004-5-2-r12. URL https://doi.org/10.1186/

gb-2004-5-2-r12.

Scikit learn developers. Compute class weight, 2007. URL http:

//scikit-learn.org/stable/modules/generated/sklearn.

utils.class_weight.compute_class_weight.html.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34

(18):3094–3100, 2018. doi: 10.1093/bioinformatics/bty191. URL http://dx.

doi.org/10.1093/bioinformatics/bty191.

Nicholas James Loman, Joshua Quick, i Jared T Simpson. A complete bacte-

rial genome assembled de novo using only nanopore sequencing data. bioRxiv,

2015. doi: 10.1101/015552. URL https://www.biorxiv.org/content/

early/2015/03/11/015552.

Ruibang Luo, Fritz J Sedlazeck, Tak-Wah Lam, i Michael Schatz. Clairvoyante: a

multi-task convolutional deep neural network for variant calling in single molecule

sequencing. bioRxiv, 2018. doi: 10.1101/310458. URL https://www.

biorxiv.org/content/early/2018/04/28/310458.

Alistair Miles. Pysamstats, 2012. URL https://github.com/alimanfoo/

pysamstats.

Myers E.W. et al. A whole-genome assembly of drosophila. Science, (287):2196–

2204, 2000.

Oxford Nanopore. Update: New ‘r9’ nanopore for faster, more

accurate sequencing, and new ten minute preparation kit, 2016.

40

URL https://nanoporetech.com/about-us/news/

update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation.

Nanoporetech. Medaka, 2018. URL https://nanoporetech.github.io/

medaka/.

NVIDIA. Nvidia-docker, 2018. URL https://github.com/NVIDIA/

nvidia-docker.

PacificBiosciences. Genomicconsensus, 2018. URL https://github.com/

PacificBiosciences/GenomicConsensus.

Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst,

Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T. Afshar,

Sam S. Gross, Lizzie Dorfman, Cory Y. McLean, i Mark A. DePristo. Creating

a universal snp and small indel variant caller with deep neural networks. bioRxiv,

2018. doi: 10.1101/092890. URL https://www.biorxiv.org/content/

early/2018/03/20/092890.

Genome Research. Samtools, 2009. URL http://www.htslib.org/.

Martin Sosic i Mile Sikic. Edlib: A c/c++ library for fast, exact sequence alignment

using edit distance. bioRxiv, 2016. doi: 10.1101/070649. URL https://www.

biorxiv.org/content/early/2016/08/23/070649.

S. Michelle Todd, Robert E. Settlage, Kevin K. Lahmers, i Daniel J. Slade. Fusobac-

terium genomics using minion and illumina sequencing enables genome comple-

tion and correction. mSphere, 3(4), 2018. doi: 10.1128/mSphere.00269-18. URL

https://msphere.asm.org/content/3/4/e00269-18.

Robert Vaser, Ivan Sovic, Niranjan Nagarajan, i Mile Sikic. Fast and accurate de

novo genome assembly from long uncorrected reads. bioRxiv, 2016. doi: 10.1101/

068122. URL https://www.biorxiv.org/content/early/2016/08/

05/068122.

JL Weirather, M de Cesare, Y Wang, P Piazza, V Sebastiano, XJ Wang, D Buck, i

KF Au. Comprehensive comparison of pacific biosciences and oxford nanopore

technologies and their applications to transcriptome analysis [version 1; referees:

2 approved with reservations]. F1000Research, 6(100), 2017. doi: 10.12688/

f1000research.10571.1.

41

Wikipedia. Binary alignment map, 2016a. URL https://en.wikipedia.org/

wiki/Binary_Alignment_Map.

Wikipedia. Sam (file format), 2016b. URL https://en.wikipedia.org/

wiki/SAM_(file_format).

42

Assembly Improvement Using Deep Learning Methods

Abstract

Development of tools for genome assembling with enough precision to be useful

in practice is still an open problem. Third generation sequencers allow genome as-

sembly with smaller fragmentation and high accuracy. In this work, we try to improve

the final accuracy of the assembled genome using deep learning techniques. Trained

convolutional deep network polishes errors in the assembled genome by learning the

correct bases, insertions and deletions patterns. Networks are prepared to be used with

Pacific Biosciences and Oxford Nanopore data. Current results show that sometimes

models slightly improve, sometimes slightly degrade consensus quality, but there is

still a room for progress since there are a lot of untested ideas which are described in

the end of the thesis.

Keywords: bioinformatics, consensus, genom assembly, deep learning

Poboljšanje sastavljenih genoma metodama dubokog učenja

Sažetak

Razvijanje alata koji sastavljaju genom s dovoljnom točnošću da bi bili upotrebljivi

u praksi još je otvoren problem. Ured̄aji treće generacije za sekvenciranje genoma

omogućuju sastavljanje genoma s manjom stopom fragmentiranosti te visokom točnošću.

Konačnu točnost stastavljenog genoma u ovom radu pokušavamo popraviti metodama

dubokog učenja. Trenirana konvolucijska duboka mreža na temelju naučenih frekven-

cija pojedinih baza, umetanja i brisanja popravlja konačni genom ispravljajući pron-

ad̄ene pogreške. Mreže su pripremljene za Pacific Biosciences te Oxford Nanopore

podatke. Trenutni rezultati pokazuju da modeli na nekim konsezusuzima neznatno

poprave, dok na drugima neznatno snize druge točnost. No, modele je moguće još

popraviti s nizom neisprobanih ideja opisanih na kraju rada.

Ključne riječi: bioinfromatika, konsenzus, sastavljanje genoma, duboko učenje

